
STORMWATER MANAGEMENT REPORT

FOR

PEBBLEBROOK VISTA

LAND LOT 466 - 17^{TH} DISTRICT – 2^{ND} SECTION COBB COUNTY, GEORGIA CITY OF SMYRNA

PREPARED BY

44 DARBY'S CROSSING DRIVE, SUITE 200 HIRAM, GEORGIA 30141 Ph. (770) 435-2576

April 10, 2019

TABLE OF CONTENTS

SITE ANALYSIS	3-4
PRE-DEVELOPMENT, BASINS 1, 2, & 3	5-6
ALLOWABLE FLOW PER BASIN, 10% MINIMUM REDUCTION	7
POST-DEVELOPMENT - BASIN 1	8
POST DEVELOPMENT – BASIN 2	9-10
POST DEVELOPMENT – BASIN 3	11
ALLOWABLE FLOW SUMMARY	12
WATER QUALITY REQUIREMENTS AND PROVISIONS	13-14
WATER QUALITY DRAIN ORIFICE CALCULATIONS, BASIN 1-3	15-17
APPENDIX Watershed Model Schematic Pre-Development Map Post-Development Map Outlet Details, Lot 1, 2, & 3 (3 pages) Water Quality Drain Detail Encasement Detail Pond Summary Reports (5 pages) Hydrograph #9 (7 pages) Hydrograph #10 (7 pages) Hydrograph #11 (7 pages) Hydrograph #12 (7 pages) Hydrograph Return Period Recap Storm Drain Report (16 pages) NOAA Atlas 14 Precipitation Frequency Chart (4 pages)	18

SITE ANALYSIS

SITE LOCATION

The site to be developed is located at 990 Pebblebrook Road, Mableton, Georgia and consists of 1.0245 acres located in Land Lot 466 of the 17th District, 2nd Section, Cobb County and within the city limits of Smyrna, Georgia as shown on a survey prepared for Brian Minnick dated 02/16/18, last revised 11/20/18 by J.A. Evans & Associates.

PRE DEVELOPMENT

The pre-developed terrain of the property is such that it is divided into three basins, Basin 1, Basin 2, Basin 3 (see Pre-Development Map). This report will provide an analysis of each basin to document that the post-development flow rates will be reduced by a minimum of 10% for each basin as required by the City of Smyrna. This report is based upon a proposed Rezoning Application to divide the property into three R-15 conditional lots and will provide water quality and detention for each lot on each of the three proposed lots. This report will be based upon a Grading Plan prepared by Paul Lee Consulting Engineering Associates, Inc., dated 4-8-19.

<u>Basin 1</u> consists of a total drainage area of 0.004 Acres Onsite as shown on the Pre-Development map.

<u>Basin 2</u> consists of a total drainage area of 1.022 Acres, with 0.116 acres offsite and 0.906 acres onsite as shown on the Pre-Development map.

<u>Basin 3</u> consists of a total drainage are of 0.14 Acres, with 0.029 acres offsite and 0.114 acres onsite as shown on the Pre-Development map.

POST DEVELOPMENT

After development and based on the proposed Grading Plan shown on the Post-Development Map, <u>Basin 1</u> will have a total of 0.001 acres remaining onsite with the redirection of 0.003 acres into Basin 2. All runoffs will be reduced to meet city requirements; therefore, no detention utilized for this basin.

After development and based on the proposed Grading Plan shown on the Post-Development Map, <u>Basin 2</u> will be controlled by three individual detention facilities as directed by the City of Smyrna. Each lot will be analyzed and routed through a detention facility and the three routings will be combined to produce a total runoff at the study point for Basin 2. Flows are identified as those Bypassing the Pond, a total of

SITE ANALYSIS (continued)

0.154 acres, (Lot 1 = 0.028 acres, Lot 2 = 0.059 acres, Lot 3 = 0.067 acres) and those Into Pond (Lot 1 = 0.317 acres, Lot 2 = 0.285 acres, and Lot 3 = 0.268 acres).

After development, <u>Basin 3</u> will have a total of 0.0189 acres remaining onsite with the redirection of 0.0951 acres into Basin 2. All runoffs will be reduced to meet city requirements; therefore, no detention utilized for this basin.

DOWNSTREAM ANALYSIS

The subject parcel is located at the top of the overall drainage channel and is less than 10% of the basin at the first confluence of the downstream channel. Therefore, no 10% Downstream Study is required.

FLOODPLAIN

The property is not in an area having flood hazards as per Flood Insurance Rate Map (F.I.R.M) No 13067C0209 H dated 3/4/2013.

STORMWATER MANAGEMENT CRITERIA

All design is carried through a 100-year storm event. All hydrologic and hydraulic calculations are based on the latest standards and specifications of the NRCS method to analyze the pre and post development runoffs.

Rainfall intensity tables pertain to Atlanta; runoff coefficients and all other data used for calculations were obtained from the Georgia Storm Water Management Manual, Volume 2, and other related textbooks.

PRE-DEVELOPMENT

(See Pre-Development Map)

BASIN 1

<u>DRAINAGE AREA:</u> 0.004 Acres (all onsite)

<u>RUNOFF CURVE NUMBER (CN):</u> 55 (Soil Type "B", Gwinnett Clay Loam)

<u>TIME OF CONCENTRATION, Tc</u> = 5 minutes (minimum) (See TR-55 printout)

<u>RUNOFFS (cfs)</u> See Hydrograph Return Period Recap, Pre-development Basin 1

<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
0.001	0.002	0.005	.007	0.011	0.014	0.027

BASIN 2

DRAINAGE AREA: 1.022 Acres

(0.116 Acres, Offsite) (0.906 Acres, Onsite)

<u>RUNOFF CURVE NUMBER (CN):</u> 55 (Soil Type "B", Gwinnett Clay Loam)

<u>TIME OF CONCENTRATION, Tc</u> = 6 minutes (See TR-55 printout)

RUNOFFS (cfs) See Hydrograph Return Period Recap, Pre-development Basin 2

<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
0.30	0.58	1.17	1.75	2.69	3.49	4.38

PRE-DEVELOPMENT

(continued)

BASIN 3

DRAINAGE AREA: 0.14 Acres

(0.029 Acres, Offsite) (0.114 Acres, Onsite)

RUNOFF CURVE NUMBER (CN): 55 (Soil Type "B", Gwinnett Clay Loam)

<u>TIME OF CONCENTRATION, Tc</u> = 55 minutes (minimum) (See TR-55 printout)

RUNOFFS (cfs) See Hydrograph Return Period Recap, Pre-development Basin 3

<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
0.004	0.08	0.16	0.24	0.37	0.48	0.60

ALLOWABLE FLOW PER BASIN

10% Minimum Reduction of Pre-Development Runoff

BASIN 1

Runoff Flows (cfs)

	<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
Q pre 10%	0.001	0.002	0.005	0.006	0.010	0.013	0.015

BASIN 2

Runoff Flows (cfs)

	<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
Q pre 10%	0.27	0.52	1.05	1.58	2.42	3.14	3.94

BASIN 3

Runoff Flows (cfs)

	<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
Q pre 10%	0.04	0.07	0.14	0.22	0.33	0.43	0.54

(See Post Development Map)

BASIN 1

<u>DRAINAGE AREA:</u> 0.001 Acres (Remaining)

(0.003 Acres re-directed into Basin 2)

<u>RUNOFF CURVE NUMBER (CN):</u> 61 (Grass, good condition)

<u>TIME OF CONCENTRATION, Tc</u> = 5 minutes (minimum)

RUNOFFS (cfs) See Hydrograph Return Period Recap, Post Basin 1

<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
0.001	0.001	0.002	0.002	0.004	0.004	0.005

BASIN 1 - Summary

Runoff Flows (cfs)

	<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
Qpre 10%							
Reduction	0.001	0.002	0.005	0.006	0.010	0.013	0.015
Qpost	0.001	0.001	0.002	0.002	0.004	0.004	0.005
% of							
Reduction	0%	50%	60%	71%	64%	71%	71%

NO DETENTION REQUIRED.

(continued)

BASIN 2 – BYPASSING PONDS

DRAINAGE AREA: 0.154 Acres

(0.028 Acres – Lot 1) (0.059 Acres – Lot 2) (0.067 Acres – Lot 3)

<u>RUNOFF CURVE NUMBER (CN):</u> 61 (All grass, undisturbed)

<u>TIME OF CONCENTRATION</u>, <u>Tc</u> = 5 minutes (minimum) (See TR-55 printout)

<u>RUNOFFS (cfs)</u> See Hydrograph Return Period Recap, Post Bypass

<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
0.11	0.17	0.28	0.38	0.54	0.68	0.82

BASIN 2 – INTO POND, LOT 1

DRAINAGE AREA: 0.317 Acres

(0.214 Acres, Grass)

(0.103 Acres, House & Drives)

RUNOFF CURVE NUMBER (CN): 73

$$0.214(61) + (0.103)(98) = 73$$

0.317

TIME OF CONCENTRATION, Tc = 5 minutes (minimum) (See TR-55 printout)

RUNOFFS (cfs) See Hydrograph Return Period Recap, Post into Pond 1

<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
0.58	0.74	1.03	1.29	1.69	2.02	2.37

(continued)

BASIN 2 – INTO POND, LOT 2

DRAINAGE AREA: 0.285 Acres

(0.185 Acres, Grass)

(0.10 Acres, House & Drives)

RUNOFF CURVE NUMBER (CN): 74

0.10(98) + (0.185)(61) = 74

0.285

TIME OF CONCENTRATION, Tc = 5 minutes (minimum) (See TR-55 printout)

RUNOFFS (cfs) See Hydrograph Return Period Recap, Into Pond Lot 2

<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
0.55	0.70	0.96	1.20	1.57	1.86	2.18

BASIN 2 – INTO POND, LOT 3

DRAINAGE AREA: 0.268 Acres

(0.171 Acres, Grass)

(0.097 Acres, House & Drives)

RUNOFF CURVE NUMBER (CN): 74

0.097(98) + (0.171)(61) = 74

0.268

<u>TIME OF CONCENTRATION, Tc</u> = 5 minutes (minimum) (See TR-55 printout)

RUNOFFS (cfs) See Hydrograph Return Period Recap, Into Pond Lot 3

<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
0.52	0.66	0.91	1.13	1.47	1.75	2.05

(continued)

BASIN 3

<u>DRAINAGE AREA:</u> 0.0189 Acres Remaining (All onsite)

(0.0951 Acres re-directed into Basin 2)

<u>RUNOFF CURVE NUMBER (CN):</u> 61

<u>TIME OF CONCENTRATION, Tc</u> = 5 minutes (minimum) (See TR-55 printout)

RUNOFFS (cfs) See Hydrograph Return Period Recap, Post Basin 3

<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
0.01	0.02	0.03	0.05	0.07	0.08	0.10

BASIN 3 - Summary

Runoff Flows (cfs)

	<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
Qpre 10%							
Reduction	0.04	0.07	0.14	0.22	0.33	0.43	0.54
Qpost	0.01	0.02	0.03	0.05	0.07	0.08	0.10
% of							
Reduction	75%	75%	81%	79%	81%	83%	83%

NO DETENTION REQUIRED.

ALLOWABLE FLOW SUMMARY

BASIN 1

Runoff Flows (cfs)

	<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
Q pre 10% Reduction	0.001	0.002	0.005	0.006	0.010	0.013	0.015
Q post, Hydrograph Return Period Recap, Post Basin 1	0.001	0.001	0.002	0.002	0.004	0.004	0.005

Q post < Q pre 10%, therefore **NO DETENTION UTILIZED FOR BASIN 1.**

BASIN 2

Runoff Flows (cfs)

	<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
Q pre 10% Reduction	0.27	0.52	1.05	1.58	2.42	3.14	3.94
Q post- combined,							
Hydrograph 12	0.11	0.17	0.28	0.38	1.11	2.20	3.65

Q post < Q pre %, therefore **DETENTION IS SATISFIED BY USE OF THREE DETENTION FACILITIES.**

BASIN 3

Runoff Flows (cfs)

	<u>1 YR</u>	<u>2 YR</u>	<u>5 YR</u>	<u>10 YR</u>	<u>25 YR</u>	<u>50 YR</u>	<u>100 YR</u>
Q pre 10% Reduction	0.04	0.07	0.14	0.22	0.33	0.43	0.54
Q post- combined, Hydrograph Return Period Recap, Post Basin 3	0.01	0.02	0.03	0.05	0.07	0.08	0.10

Q post < Q pre 10%, therefore **NO DETENTION UTILIZED FOR BASIN 3.**

WATER QUALITY REQUIREMENTS & PROVISIONS

<u>LOT 1</u>

 Total Area:
 0.345 Acres (15,000 S.F.)

 Total Impervious:
 0.101 Acres (4,425 S.F.)

I (Impervious % of Site): 29.5%

Rv (weighted runoff): $0.05 + (29.5 \times 0.009) = 0.316$

A: 0.345 Acres

REQUIRED WQv = (1.2)(0.316)(0.345) = 0.010902 Ac/ft

12

 $(0.010902 \text{ Ac/FT})(43560 \text{ FT}^2/\text{Ac}) = 474.89 \text{ c.f. required}$

PROVIDED WQv = 985 S.F. x 40% Voids = 394 S.F.

 $394 \text{ S.F. } \times 1.25 \text{ FT} = 492.50 \text{ c.f. provided}$

492.50 > 474.89, Volume Satisfied

LOT 2

 Total Area:
 0.344 Acres (15,000 S.F.)

 Total Impervious:
 0.98 Acres (4,285 S.F.)

I (Impervious % of Site): 28.6%

Rv (weighted runoff): $0.05 + (28.6 \times 0.009) = 0.307$

A: 0.344 Acres

REQUIRED $WQv = \frac{(1.2)(0.307)(0.344)}{(0.307)(0.344)} = 0.0105608 \text{ Ac/ft}$

12

 $(0.0105608 \text{ Ac/FT})(43560 \text{ FT}^2/\text{Ac}) = \underline{460.03 \text{ c.f. required}}$

PROVIDED WQv = 700 S.F. x 40% Voids = 280 S.F.

280 S.F. x 1.65 FT = $\underline{462.0 \ c.f. \ provided}$

462.0 > 460.03, Volume Satisfied

WATER QUALITY REQUIREMENTS & PROVISIONS (continued)

LOT 3

 Total Area:
 0.336 Acres (14,620 S.F.)

 Total Impervious:
 0.97 Acres (4,245 S.F.)

I (Impervious % of Site): 29.0%

Rv (weighted runoff): $0.05 + (29 \times 0.009) = 0.311$

A: 0.336 Acres

REQUIRED WQv = (1.2)(0.311)(0.336) = 0.0104496 Ac/ft

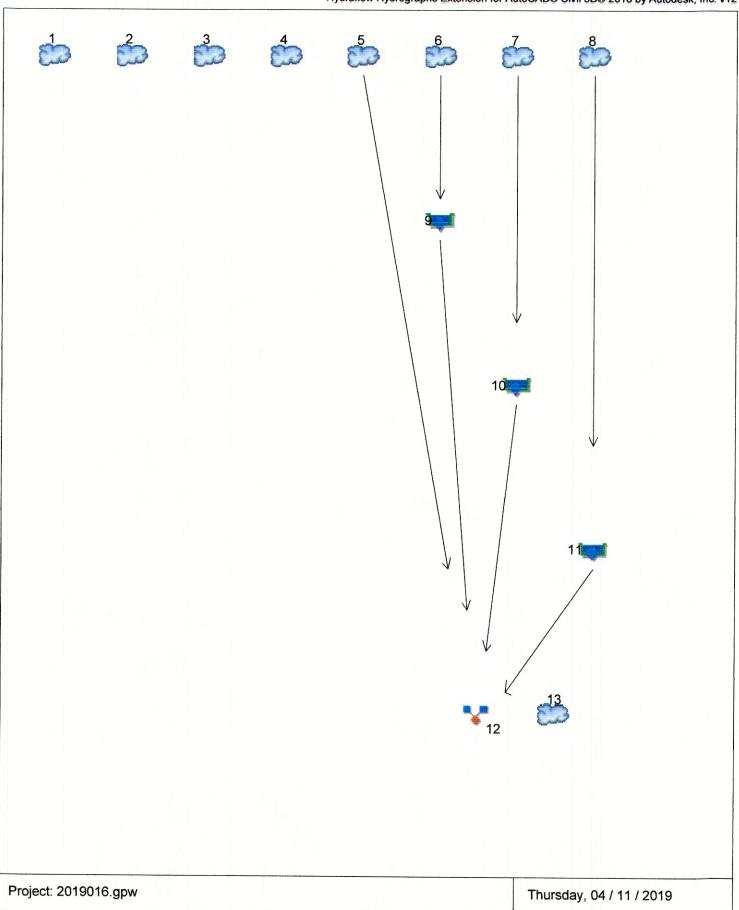
12

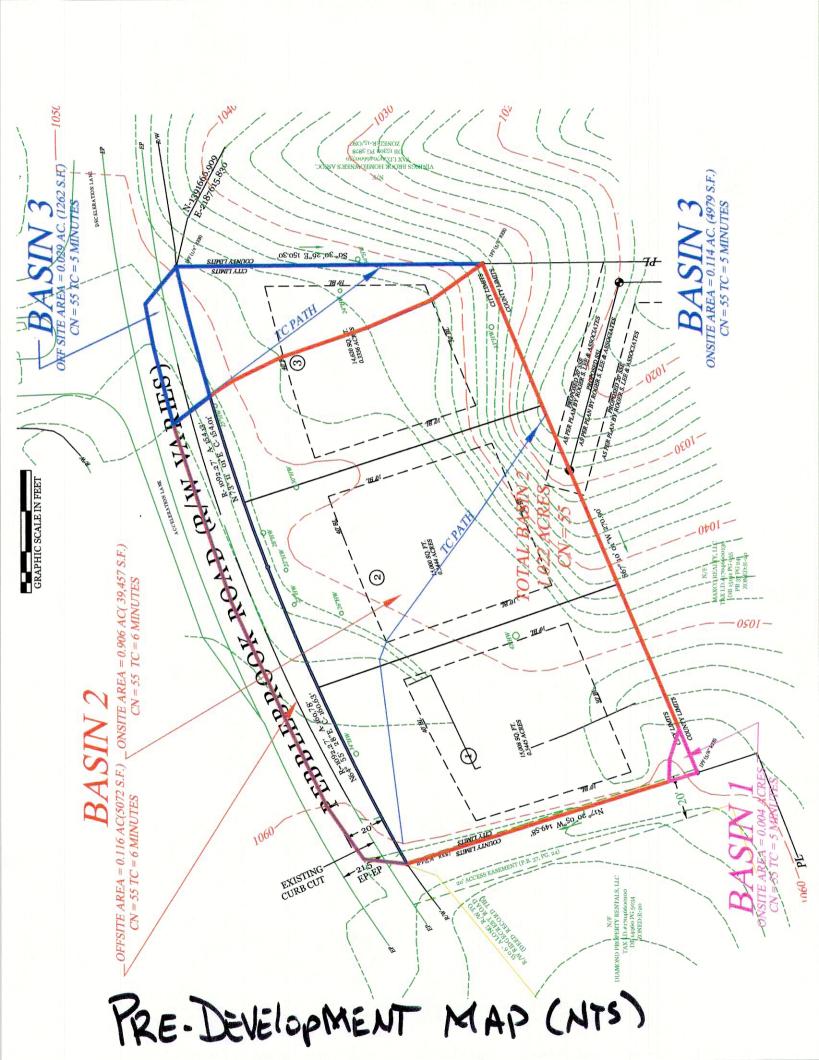
 $(0.0104496 \text{ Ac/FT})(43560 \text{ FT}^2/\text{Ac}) = 455.18 \text{ c.f. required}$

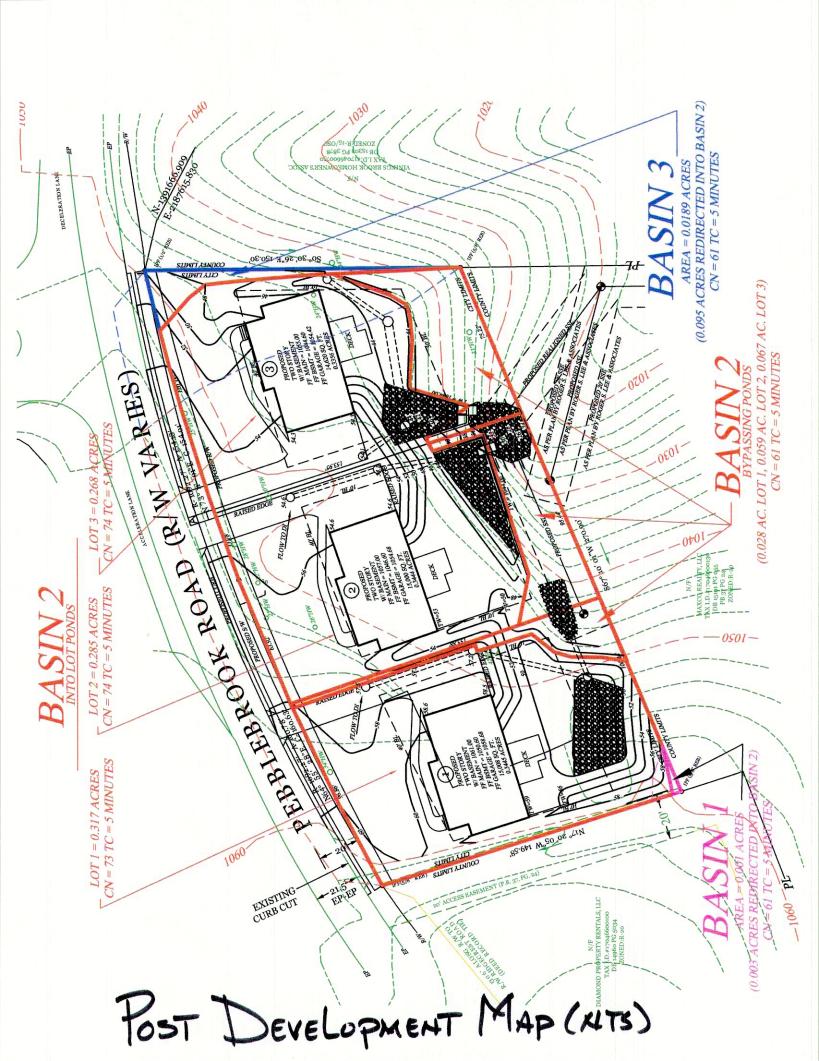
PROVIDED WQv = 700 S.F. x 40% Voids = 280 S.F.

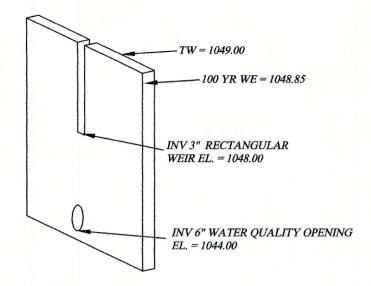
280 S.F. x 1.63 FT = <u>456.0 c.f. provided</u>

456.0 > 455.18, Volume Satisfied

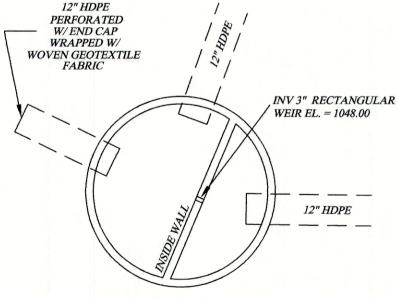

WATER QUALITY DRAIN ORIFICE CALCULATIONS BASIN 1							
ORIFICE SIZE (IN.)	3/8						
ORIFICE AREA (S.F.)	0.00076699						
POND HEIGHT (FT.)	1.25						
POND VOLUME (C.F.)	495						
Q FLOW (CFS)	0.0041						
C.F. HOUR	14.76						
HOURS TO DRAIN	33.33						


WATER QUALITY DRAIN ORIFICE CALCULATIONS BASIN 2						
ORIFICE SIZE (IN.)	3/8					
ORIFICE AREA (S.F.)	0.00076699					
POND HEIGHT (FT.)	1.65					
POND VOLUME (C.F.)	462					
Q FLOW (CFS)	0.0047					
C.F. HOUR	16.92					
HOURS TO DRAIN	27.3					

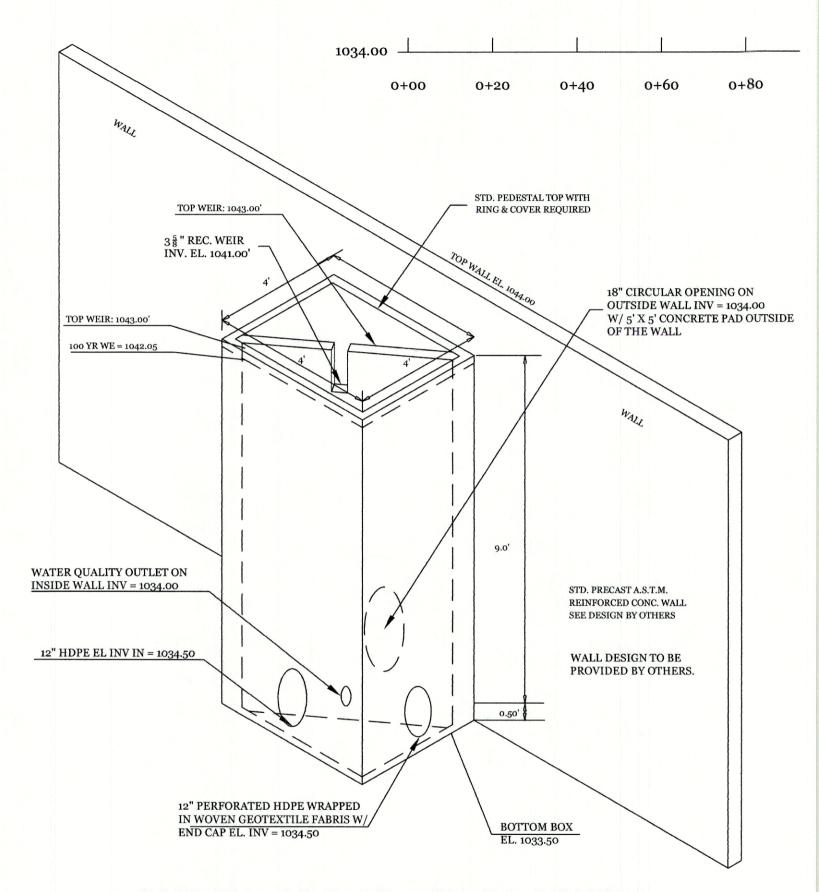

WATER QUALITY DRAIN ORIFICE CALCULATIONS BASIN 3						
ORIFICE SIZE (IN.)	3/8					
ORIFICE AREA (S.F.)	0.00076699					
POND HEIGHT (FT.)	1.63					
POND VOLUME (C.F.)	456					
Q FLOW (CFS)	0.0047					
C.F. HOUR	16.92					
HOURS TO DRAIN	26.95					

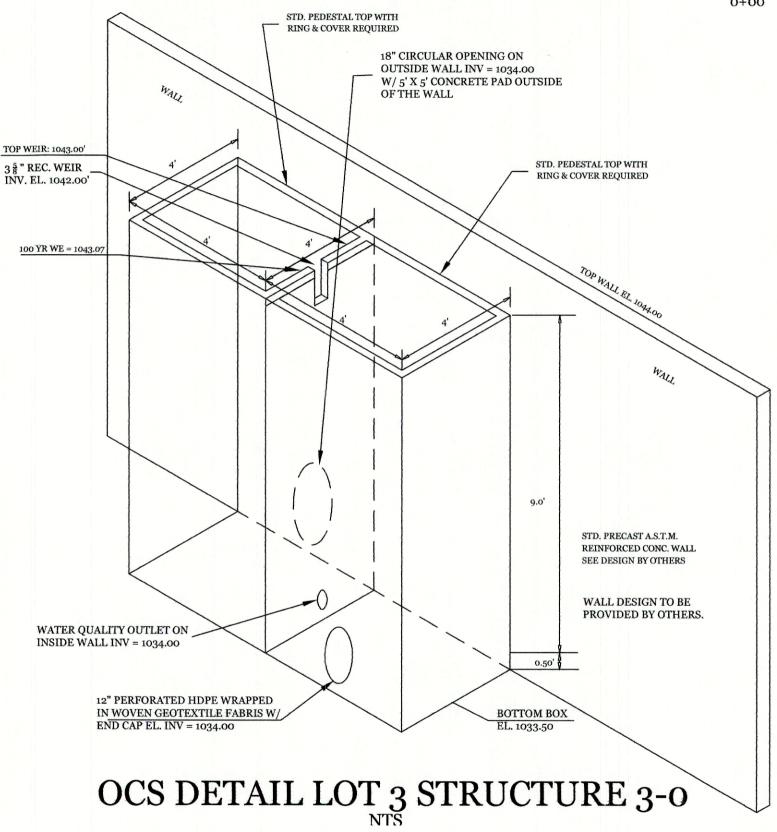

APPENDIX

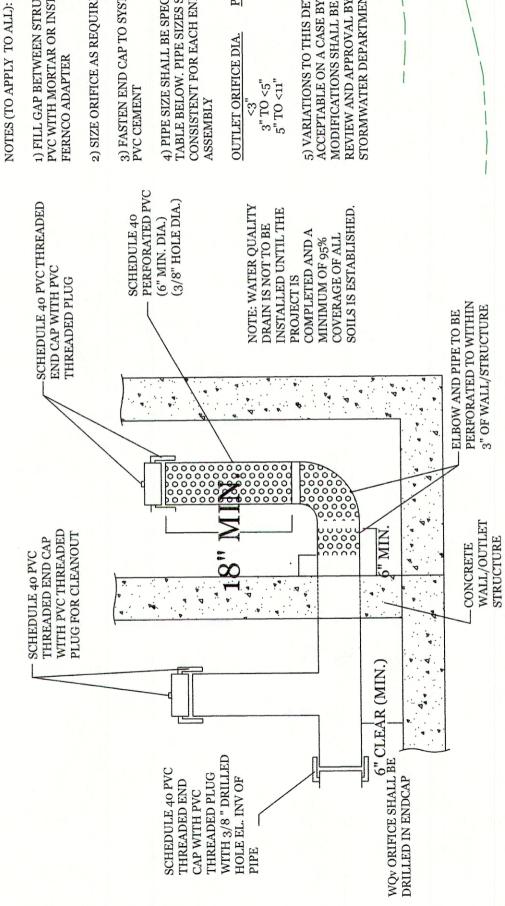
Watershed Model Schematic Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12



INSIDE WALL DETAIL



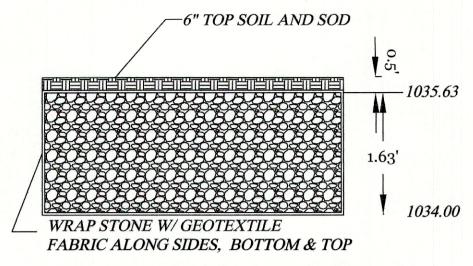

POND OUTLET LOT 1 STRUCTURE 1-2


PLAN VIEW DETAIL

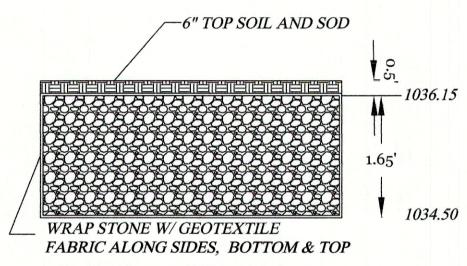
NTS

OCS DETAIL LOT 2 STRUCTURE 2-1

1) FILL GAP BETWEEN STRUCTURE AND PVC WITH MORTAR OR INSTALL A FERNCO ADAPTER


2) SIZE ORIFICE AS REQUIRED

3) FASTEN END CAP TO SYSTEM WITH PVC CEMENT 4) PIPE SIZE SHALL BE SPECIFIED PER TABLE BELOW. PIPE SIZES SHALL BE CONSISTENT FOR EACH END-CAP ASSEMBLY


PIPE SIZE 12, 8 OUTLET ORIFICE DIA. 3" TO <5" 5" TO <11" 3

5) VARIATIONS TO THIS DETAIL MAY BE ACCEPTABLE ON A CASE BY CASE BASIS. MODIFICATIONS SHALL BE SUBJECT TO REVIEW AND APPROVAL BY THE STORMWATER DEPARTMENT.

WATER QUALITY DETAII

ENCASEMENT DETAIL LOT 3 NTS

ENCASEMENT DETAIL LOT 2 NTS

ENCASEMENT DETAIL LOT 1 NTS

Pond Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Pond No. 1 - Lot 1 Pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 1045.25 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1045.25	07	0	0
0.50	1045.75	07	3	3
0.75	1046.00	215	22	25
2.75	1048.00	800	953	978
4.75	1050.00	2,165	2,854	3,832

Culvert / Orifice Structures Weir Structures [A] [C] [PrfRsr] [B] [A] [B] [C] [D] Rise (in) = 12.000.00 0.00 0.00 = 4.00 Crest Len (ft) 0.25 0.00 0.00 Span (in) = 12.000.00 0.00 0.00 Crest El. (ft) = 1049.001048.00 0.00 0.00 No. Barrels = 1 0 0 0 Weir Coeff. = 3.333.33 3.33 3.33 0.00 Invert El. (ft) = 1044.500.00 0.00 Weir Type = 1 Rect Length (ft) = 20.000.00 0.00 0.00 Multi-Stage = Yes Yes No No 0.00 Slope (%) = 1.000.00 n/a N-Value = .013.013 .013 n/a Orifice Coeff. = 0.600.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) Multi-Stage = n/aNo No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	1045.25	0.00				0.00	0.00					0.000
0.50	3	1045.75	1.62 oc				0.00	0.00					0.000
0.75	25	1046.00	1.62 oc				0.00	0.00					0.000
2.75	978	1048.00	1.62 oc				0.00	0.00					0.000
4.75	3,832	1050.00	7.44 ic				5.38 ic	2.07 s					7.442

Wednesday, 04 / 10 / 2019

Pond No. 2 - Lot 2 Pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 1036.15 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1036.15	08	0	0
0.85	1037.00	08	7	7
1.85	1038.00	267	107	114
3.85	1040.00	430	690	804
5.85	1042.00	655	1,077	1,881
7.85	1044.00	932	1,579	3,460

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	0.00	0.00	0.00	Crest Len (ft)	= 4.00	0.30	0.00	0.00
Span (in)	= 18.00	0.00	0.00	0.00	Crest El. (ft)	= 1043.00	1041.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 1034.00	0.00	0.00	0.00	Weir Type	= 1	Rect		
Length (ft)	= 1.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 1.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage ft	Storage cuft	Elevation ft	CIV A cfs	CIv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	1036.15	0.00				0.00	0.00					0.000
0.85	7	1037.00	9.35 oc				0.00	0.00					0.000
1.85	114	1038.00	9.35 oc				0.00	0.00			-		0.000
3.85	804	1040.00	9.35 oc				0.00	0.00					0.000
5.85	1.881	1042.00	9.35 oc				0.00	1.00					0.999
7.85	3,460	1044.00	10.57 oc				5.38 ic	5.19					10.57

Wednesday, 04 / 10 / 2019

Pond No. 3 - Lot 3 open pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 1035.63 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1035.63	17	0	0
4.00	1039.63	17	68	68
4.37	1040.00	73	15	83
6.37	1042.00	210	271	355
8.37	1044.00	1,235	1,303	1,657

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 0.00	0.00	0.00	0.00
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .000	.000	.000	n/a					
Orifice Coeff.	= 0.00	0.00	0.00	0.00	Exfil.(in/hr)	= 0.000 (b)	y Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage ft	Storage cuft	Elevation ft	CIV A cfs	CIV B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	1035.63											0.000
	U												0.000
4.00	68	1039.63											
4.37	83	1040.00											0.000
6.37	355	1042.00											0.000
8.37	1,657	1044.00										-	0.000

Wednesday, 04 / 10 / 2019

Pond No. 4 - 48 inch Pipe

Pond Data

UG Chambers -Invert elev. = 1035.63 ft, Rise x Span = 4.00 x 4.00 ft, Barrel Len = 45.00 ft, No. Barrels = 1, Slope = 0.00%, Headers = No

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1035.63	n/a	0	0
0.40	1036.03	n/a	30	30
0.80	1036.43	n/a	51	81 -
1.20	1036.83	n/a	62	143
1.60	1037.23	n/a	69	211
2.00	1037.63	n/a	72	283
2.40	1038.03	n/a	72	354
2.80	1038.43	n/a	68	423
3.20	1038.83	n/a	62	485
3.60	1039.23	n/a	51	536
4.00	1039.63	n/a	29	566

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 0.00	0.00	0.00	0.00
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .000	.000	.000	n/a					
Orifice Coeff.	= 0.00	0.00	0.00	0.00	Exfil.(in/hr)	= 0.000 (b)	y Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage ft	Storage cuft	Elevation ft	CIV A cfs	CIV B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	1035.63											0.000
0.40	30	1036.03											0.000
0.80	81	1036.43											0.000
1.20	143	1036.83											0.000
1.60	211	1037.23				-							0.000
2.00	283	1037.63										***	0.000
2.40	354	1038.03											0.000
2.80	423	1038.43											0.000
3.20	485	1038.83											0.000
3.60	536	1039.23											0.000
4.00	566	1039.63	-										0.000

Wednesday, 04 / 10 / 2019

Pond No. 5 - Lot 3 Pond

Pond Data

Pond storage is based on user-defined values.

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	1035.63	n/a	0	0
0.40	1036.03	n/a	30	30
0.80	1036.43	n/a	51	81
1.20	1036.83	n/a	79	160
1.60	1037.23	n/a	69	229
2.00	1037.63	n/a	89	318
2.40	1038.03	n/a	72	390
2.80	1038.43	n/a	68	458
3.20	1038.83	n/a	79	537
3.60	1039.23	n/a	51	588
4.00	1039.63	n/a	46	634
4.37	1040.00	n/a	15	649
6.37	1042.00	n/a	271	920
8.37	1044.00	n/a	1,303	2,223

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 18.00	0.00	0.00	0.00	Crest Len (ft)	= 4.00	0.30	0.00	0.00
Span (in)	= 18.00	0.00	0.00	0.00	Crest El. (ft)	= 1043.00	1042.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
invert El. (ft)	= 1034.00	0.00	0.00	0.00	Weir Type	= 1	Rect		
Length (ft)	= 1.00	0.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 1.00	0.00	0.00	n/a	_				
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

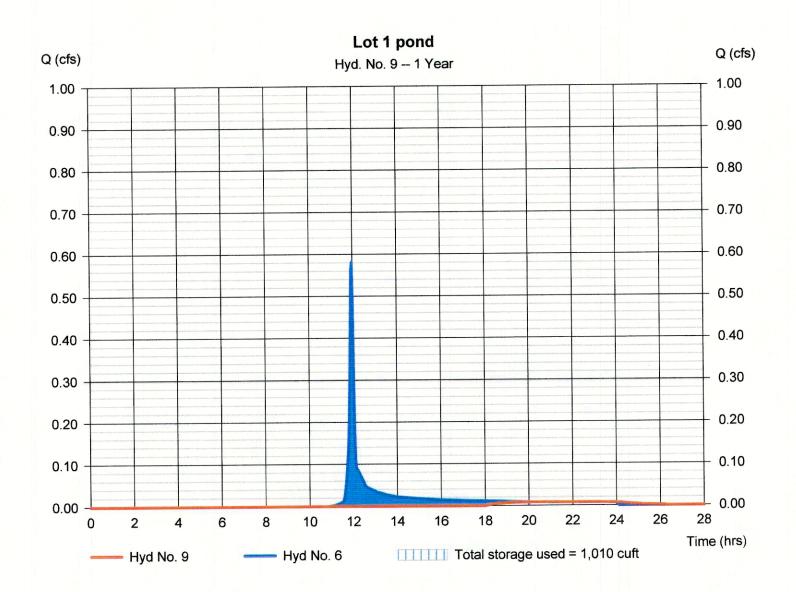
Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage ft	Storage cuft	Elevation ft	CIV A cfs	Civ B cfs	CIv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	1035.63	0.00				0.00	0.00					0.000
0.40	30	1036.03	4.31 oc				0.00	0.00					0.000
0.80	81	1036.43	4.31 oc				0.00	0.00					0.000
1.20	160	1036.83	4.31 oc				0.00	0.00					0.000
1.60	229	1037.23	4.31 oc				0.00	0.00					0.000
2.00	318	1037.63	4.31 oc				0.00	0.00					0.000
2.40	390	1038.03	4.31 oc				0.00	0.00					0.000
2.80	458	1038.43	4.31 oc				0.00	0.00					0.000
3.20	537	1038.83	4.31 oc				0.00	0.00					0.000
3.60	588	1039.23	4.31 oc				0.00	0.00					0.000
4.00	634	1039.63	4.31 oc				0.00	0.00					0.000
4.37	649	1040.00	4.31 oc				0.00	0.00					0.000
6.37	920	1042.00	4.31 oc				0.00	0.00					0.000
8.37	2,223	1044.00	8.20 oc				5.38 ic	2.83					8.202

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 9

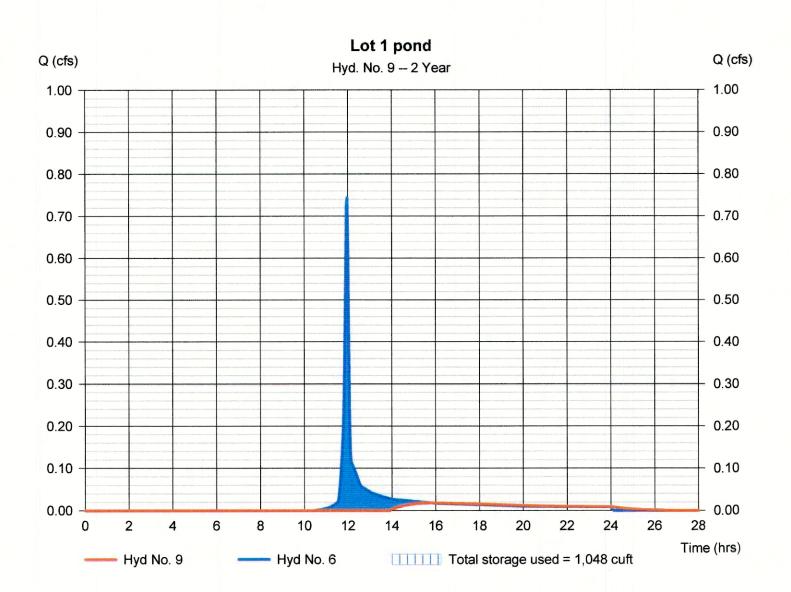

Lot 1 pond

Hydrograph type = Reservoir
Storm frequency = 1 yrs
Time interval = 2 min
Inflow hyd. No. = 6 - Post into Pond Lot 1

Reservoir name = Lot 1 Pond

Peak discharge = 0.008 cfs Time to peak = 20.70 hrs

Hyd. volume = 183 cuft
Max. Elevation = 1048.02 ft
Max. Storage = 1,010 cuft

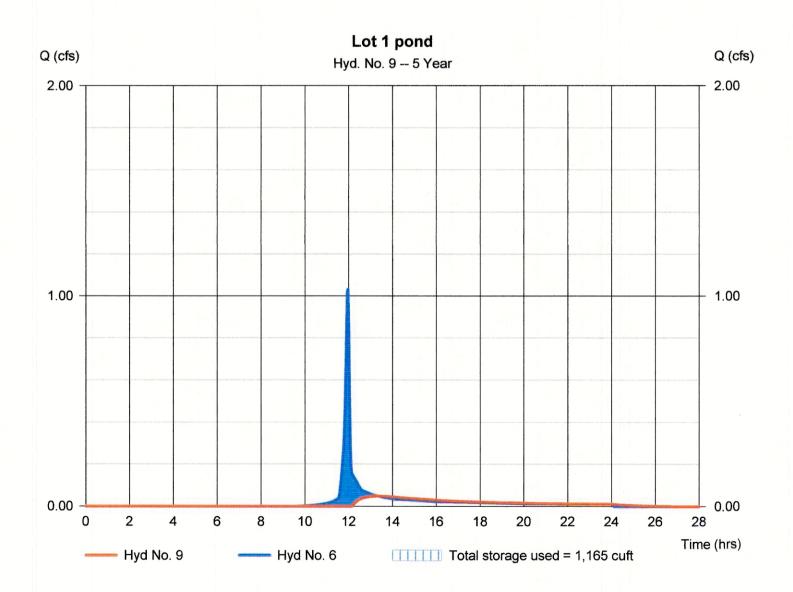

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 9

Lot 1 pond

Hydrograph type Peak discharge = 0.018 cfs= Reservoir Storm frequency Time to peak $= 15.87 \, hrs$ = 2 yrsHyd. volume = 505 cuft Time interval = 2 min Inflow hyd. No. = 6 - Post into Pond Lot 1 Max. Elevation $= 1048.05 \, ft$ Reservoir name = Lot 1 Pond Max. Storage = 1,048 cuft

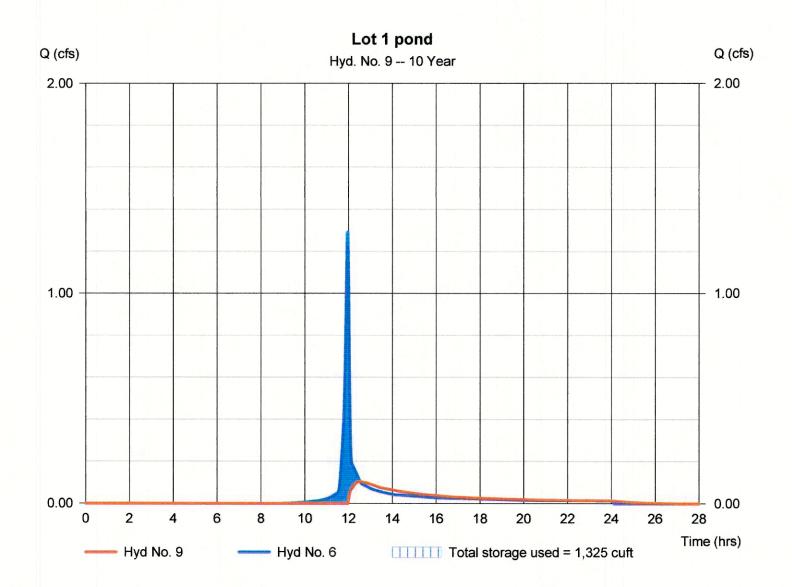

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 9

Lot 1 pond

Hydrograph type = Reservoir Peak discharge = 0.049 cfsStorm frequency Time to peak = 5 yrs $= 13.37 \, hrs$ Hyd. volume Time interval = 2 min = 1,087 cuft Inflow hyd. No. = 6 - Post into Pond Lot 1 Max. Elevation = 1048.13 ft Reservoir name = Lot 1 Pond Max. Storage = 1,165 cuft


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 9

Lot 1 pond

Peak discharge Hydrograph type = Reservoir = 0.104 cfsStorm frequency Time to peak $= 12.53 \, hrs$ = 10 yrsTime interval = 2 min Hyd. volume = 1,623 cuftInflow hyd. No. = 6 - Post into Pond Lot 1 Max. Elevation $= 1048.24 \, ft$ Reservoir name = Lot 1 Pond Max. Storage = 1,325 cuft

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 9

Lot 1 pond

Hydrograph type Storm frequency = Reservoir = 25 yrs Peak discharge Time to peak = 0.253 cfs = 12.13 hrs

Time interval

= 2 min

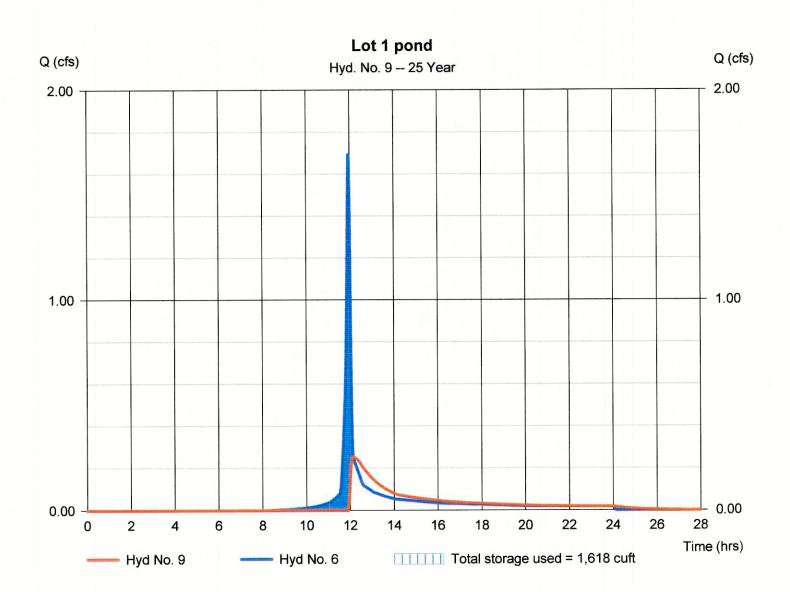
Hyd. volume

= 2,440 cuft

Inflow hyd. No.

= 6 - Post into Pond Lot 1

Max. Elevation

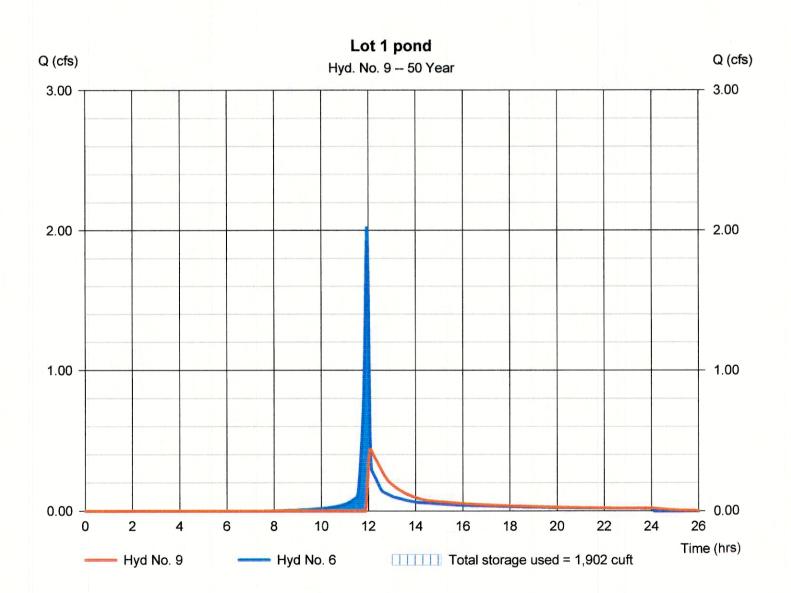

= 1048.45 ft

Reservoir name

= Lot 1 Pond

Max. Storage

= 1,618 cuft

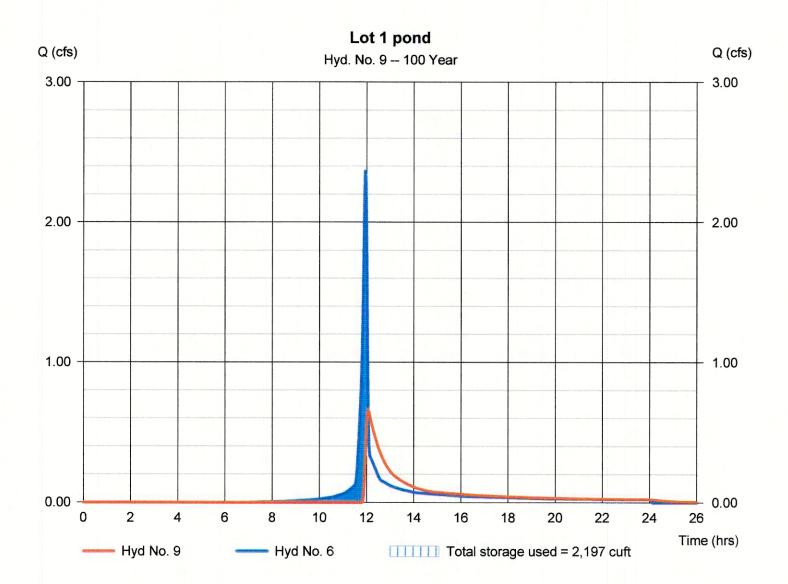

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 9

Lot 1 pond

= 0.436 cfsPeak discharge Hydrograph type = Reservoir Time to peak Storm frequency = 50 yrs $= 12.10 \, hrs$ Hyd. volume Time interval = 2 min = 3,115 cuft Inflow hyd. No. Max. Elevation = 1048.65 ft = 6 - Post into Pond Lot 1 Reservoir name = Lot 1 Pond Max. Storage = 1,902 cuft

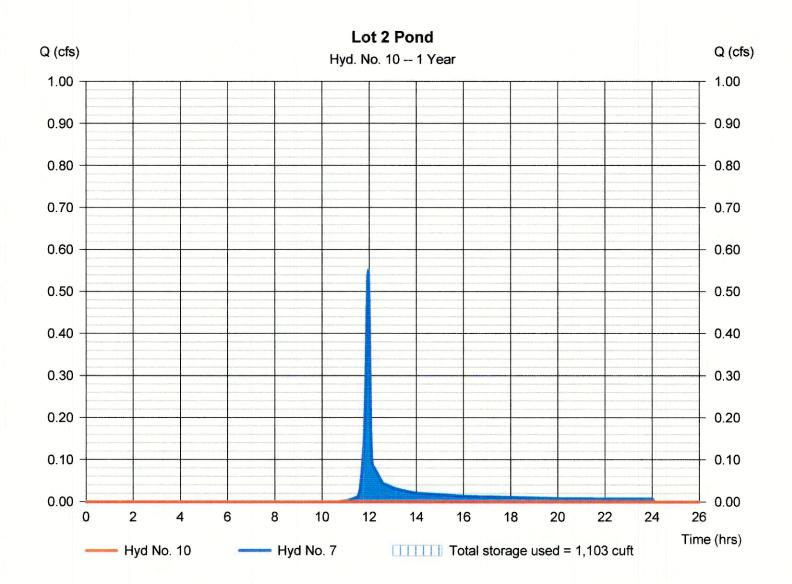

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 9

Lot 1 pond

Hydrograph type Peak discharge = Reservoir = 0.660 cfsStorm frequency Time to peak = 100 yrs $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 3,836 cuftInflow hyd. No. Max. Elevation = 6 - Post into Pond Lot 1 = 1048.85 ft Reservoir name = Lot 1 Pond Max. Storage = 2,197 cuft

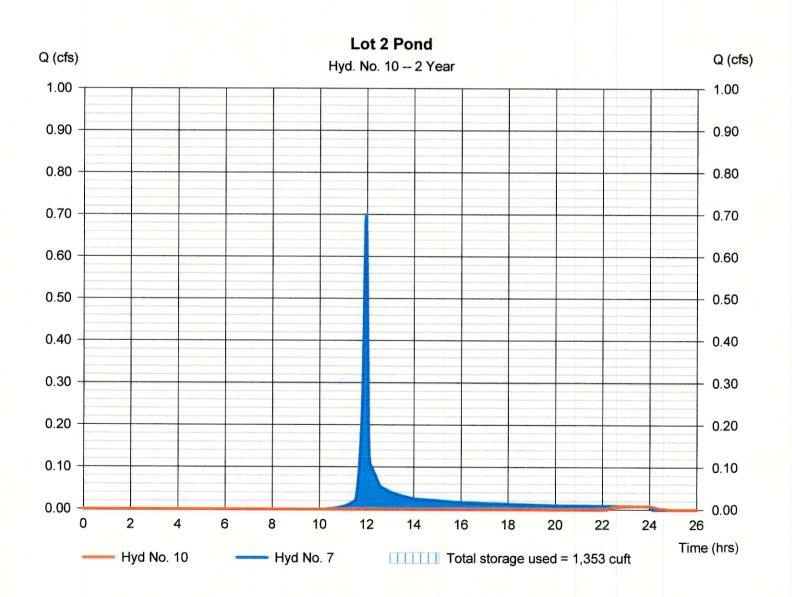

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 10

Lot 2 Pond

Hydrograph type Peak discharge = 0.000 cfs= Reservoir Storm frequency = 1 yrsTime to peak = n/aTime interval Hyd. volume = 2 min = 0 cuft Inflow hyd. No. Max. Elevation = 7 - Into Pond Lot 2 $= 1040.56 \, \mathrm{ft}$ Reservoir name = Lot 2 Pond Max. Storage = 1,103 cuft

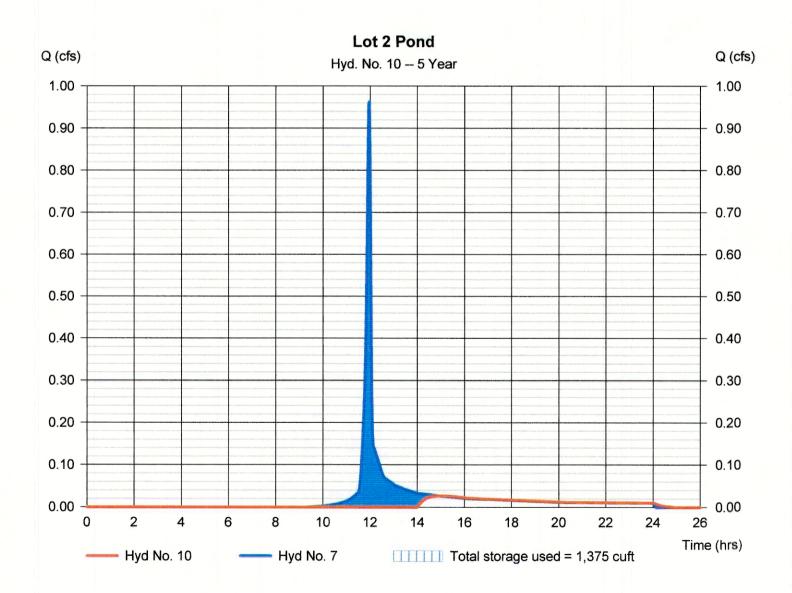

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 10

Lot 2 Pond

Hydrograph type = Reservoir Peak discharge = 0.008 cfsStorm frequency Time to peak = 2 yrs $= 23.63 \, hrs$ Time interval = 2 min Hyd. volume = 56 cuft Inflow hyd. No. = 7 - Into Pond Lot 2 Max. Elevation = 1041.02 ft Reservoir name = Lot 2 Pond Max. Storage = 1,353 cuft

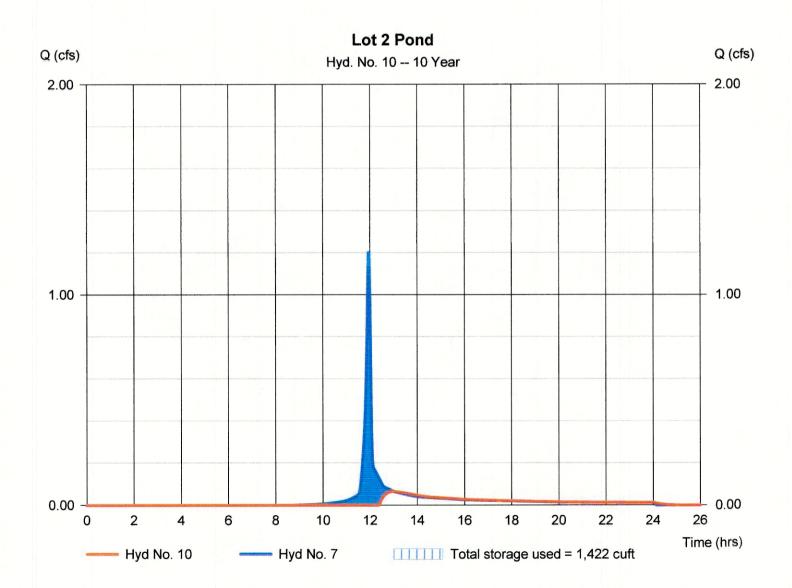

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 10

Lot 2 Pond

Hydrograph type = Reservoir Peak discharge = 0.027 cfsStorm frequency Time to peak = 5 yrs $= 15.00 \, hrs$ Hyd. volume Time interval = 2 min = 591 cuft Inflow hyd. No. = 7 - Into Pond Lot 2 Max. Elevation $= 1041.06 \, ft$ Reservoir name = Lot 2 Pond Max. Storage = 1.375 cuft

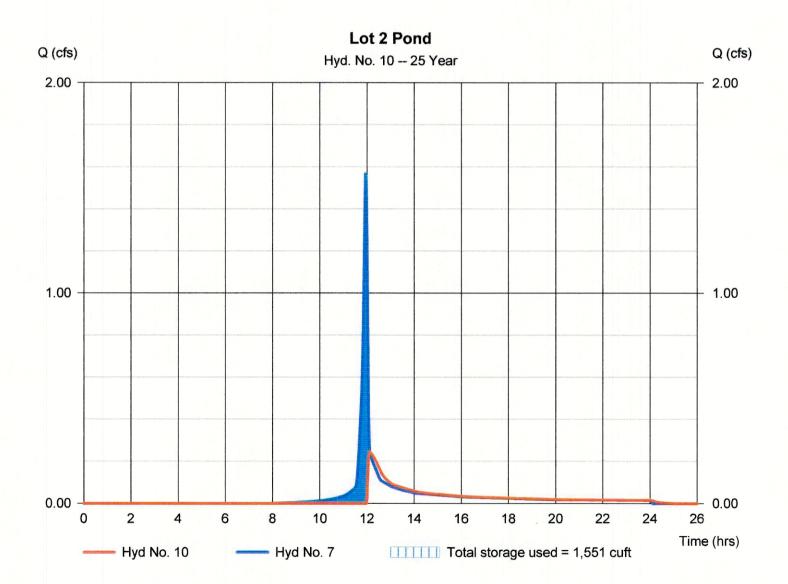

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 10

Lot 2 Pond

= 0.065 cfsHydrograph type Peak discharge = Reservoir Time to peak Storm frequency = 10 yrs $= 13.00 \, hrs$ Hyd. volume = 1,081 cuft Time interval = 2 min Inflow hyd. No. Max. Elevation = 1041.15 ft = 7 - Into Pond Lot 2 Reservoir name = Lot 2 Pond Max. Storage = 1,422 cuft

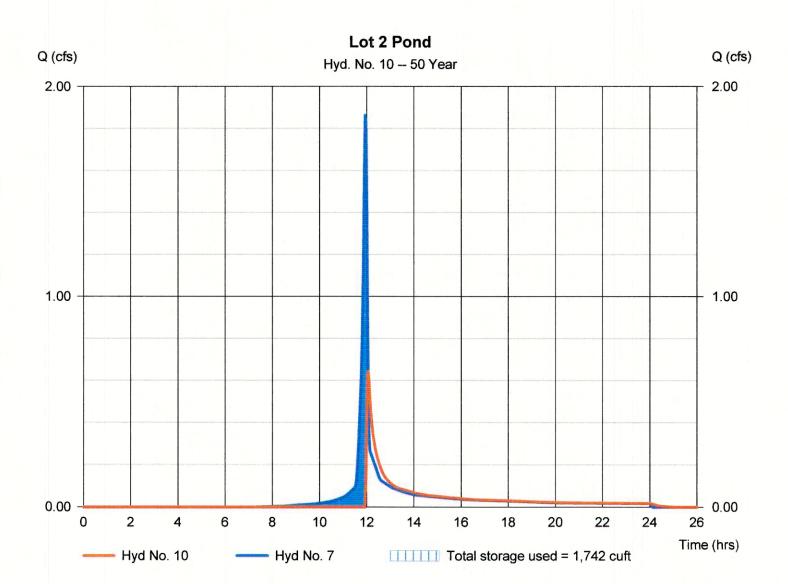

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 10

Lot 2 Pond

Hydrograph type = Reservoir Peak discharge = 0.242 cfsStorm frequency = 25 yrsTime to peak = 12.13 hrs Time interval = 2 min Hyd. volume = 1,827 cuft Max. Elevation Inflow hyd. No. = 7 - Into Pond Lot 2 = 1041.39 ft Reservoir name = Lot 2 Pond Max. Storage = 1,551 cuft


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

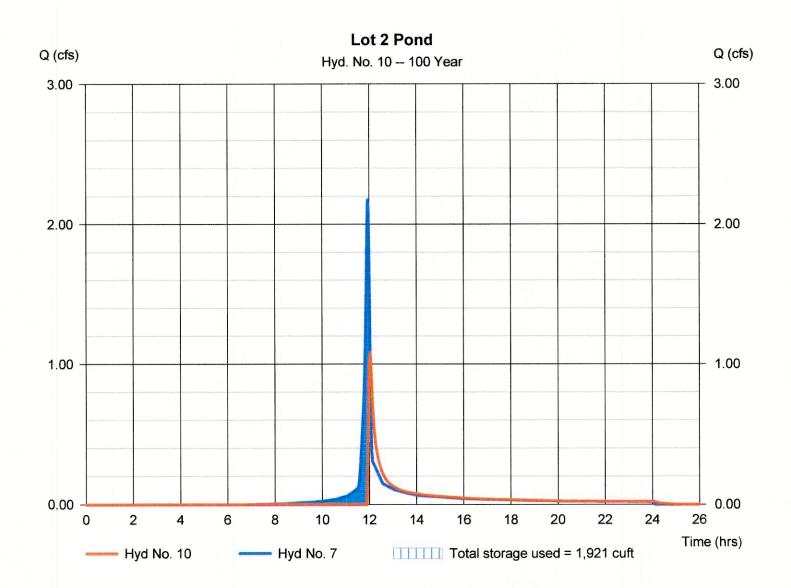
Hyd. No. 10

Lot 2 Pond

Peak discharge Hydrograph type = Reservoir = 0.642 cfsStorm frequency = 50 yrsTime to peak = 12.07 hrsTime interval Hyd. volume = 2 min = 2,441 cuftInflow hyd. No. = 7 - Into Pond Lot 2 Max. Elevation $= 1041.76 \, ft$ Reservoir name = Lot 2 Pond Max. Storage = 1,742 cuft

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

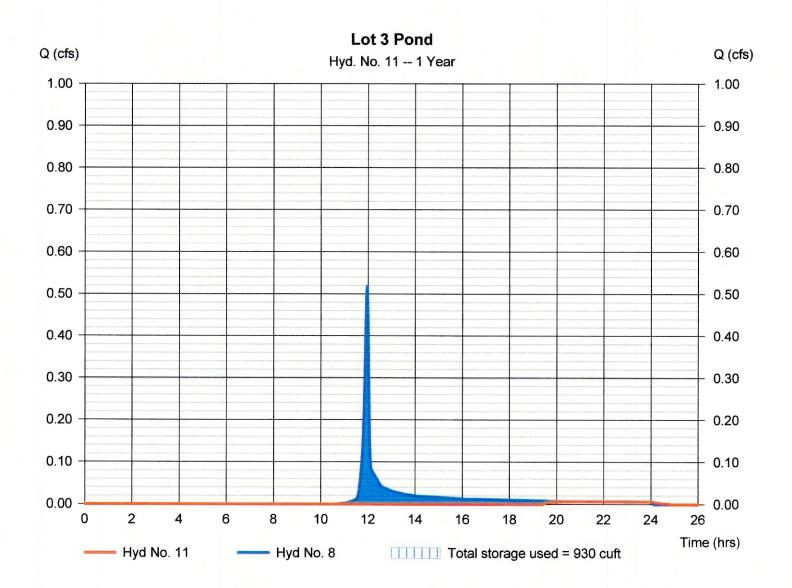

Hyd. No. 10

Lot 2 Pond

Hydrograph type Storm frequency Time interval = Reservoir = 100 yrs = 2 min Peak discharge Time to peak Hyd. volume = 1.078 cfs = 12.03 hrs = 3,097 cuft

Inflow hyd. No. Reservoir name

= 7 - Into Pond Lot 2 = Lot 2 Pond Max. Elevation = 1042.05 ft Max. Storage = 1,921 cuft


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 11

Lot 3 Pond

Hydrograph type = Reservoir Peak discharge = 0.007 cfsStorm frequency = 1 yrsTime to peak = 21.03 hrsTime interval Hyd. volume = 2 min = 116 cuft Inflow hyd. No. = 8 - Into Pond Lot 3 Max. Elevation $= 1042.02 \, \text{ft}$ Reservoir name = Lot 3 Pond Max. Storage = 930 cuft

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 11

Lot 3 Pond

Hydrograph type Storm frequency = Reservoir

Peak discharge Time to peak = 0.017 cfs = 15.50 hrs

Time interval

= 2 yrs = 2 min

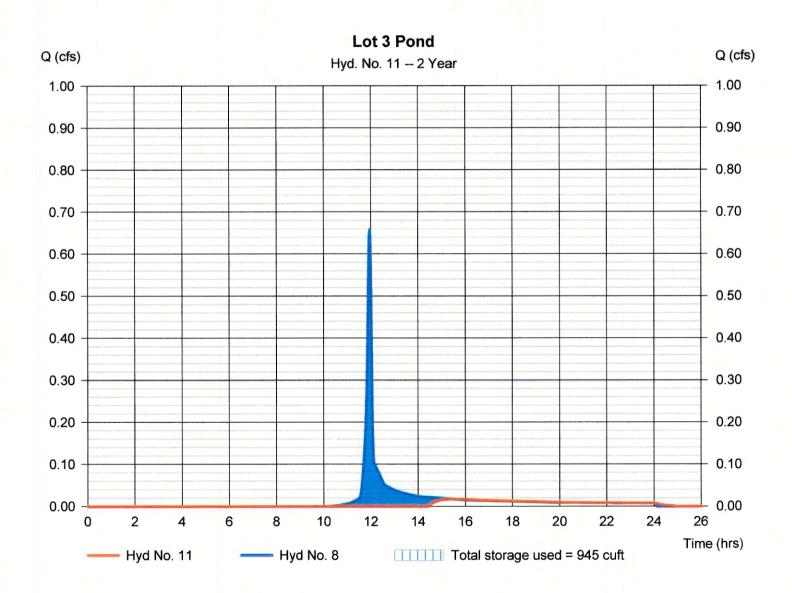
Hyd. volume

= 395 cuft

Inflow hyd. No.

= 8 - Into Pond Lot 3

Max. Elevation

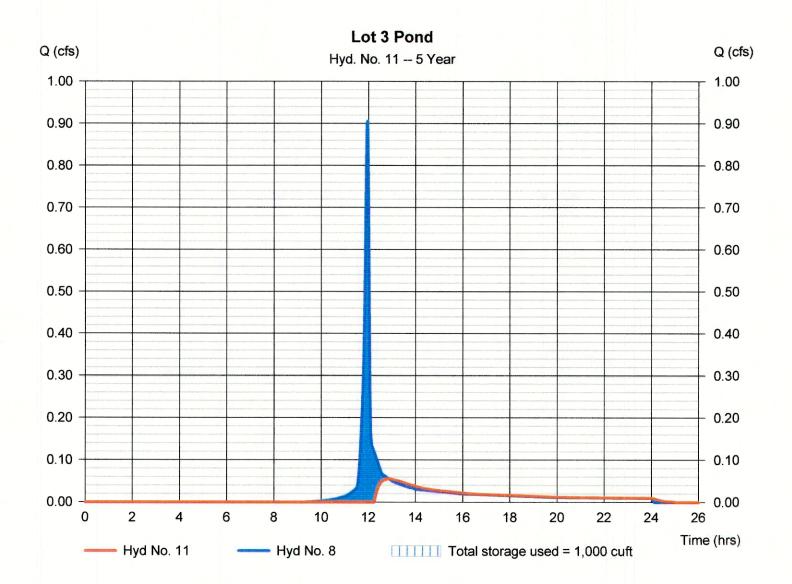

= 1042.04 ft

Reservoir name

= Lot 3 Pond

Max. Storage

= 945 cuft

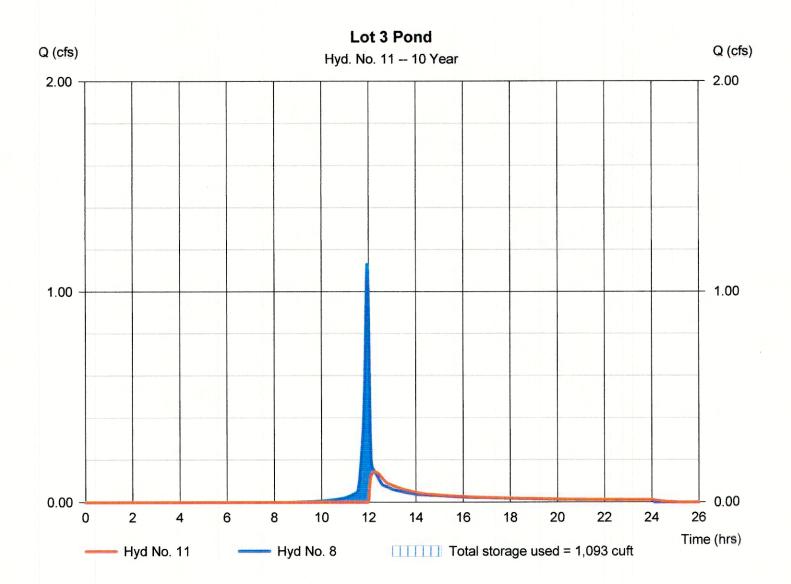

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 11

Lot 3 Pond

Hydrograph type Peak discharge = Reservoir = 0.055 cfsStorm frequency Time to peak = 5 yrs= 12.90 hrs Time interval = 2 min Hyd. volume = 898 cuft Inflow hyd. No. = 8 - Into Pond Lot 3 Max. Elevation $= 1042.12 \, ft$ Reservoir name = Lot 3 Pond Max. Storage = 1,000 cuft

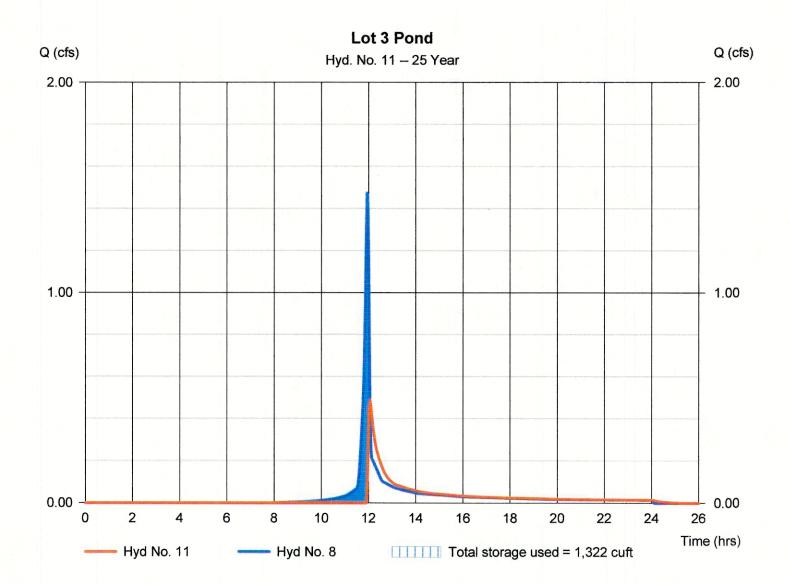

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 11

Lot 3 Pond

Hydrograph type Peak discharge = 0.142 cfs= Reservoir Time to peak Storm frequency = 10 yrs $= 12.27 \, hrs$ Hyd. volume = 2 min = 1,359 cuftTime interval Inflow hyd. No. Max. Elevation = 8 - Into Pond Lot 3 $= 1042.27 \, \mathrm{ft}$ Reservoir name = Lot 3 Pond Max. Storage = 1,093 cuft


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 11

Lot 3 Pond

Hydrograph type Peak discharge = Reservoir = 0.486 cfsStorm frequency = 25 yrsTime to peak $= 12.07 \, hrs$ Time interval = 2 min Hyd. volume = 2,060 cuftInflow hyd. No. = 8 - Into Pond Lot 3 Max. Elevation = 1042.62 ft Reservoir name = Lot 3 Pond Max. Storage = 1,322 cuft

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 11

Lot 3 Pond

Hydrograph type Storm frequency = Reservoir = 50 yrs

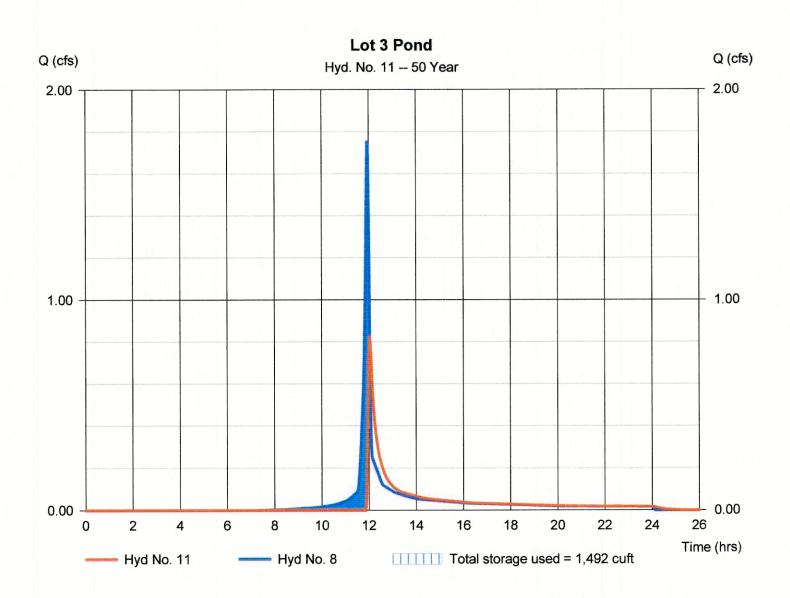
Peak discharge Time to peak

= 0.825 cfs $= 12.03 \, hrs$

Time interval

= 2 min

Inflow hyd. No.

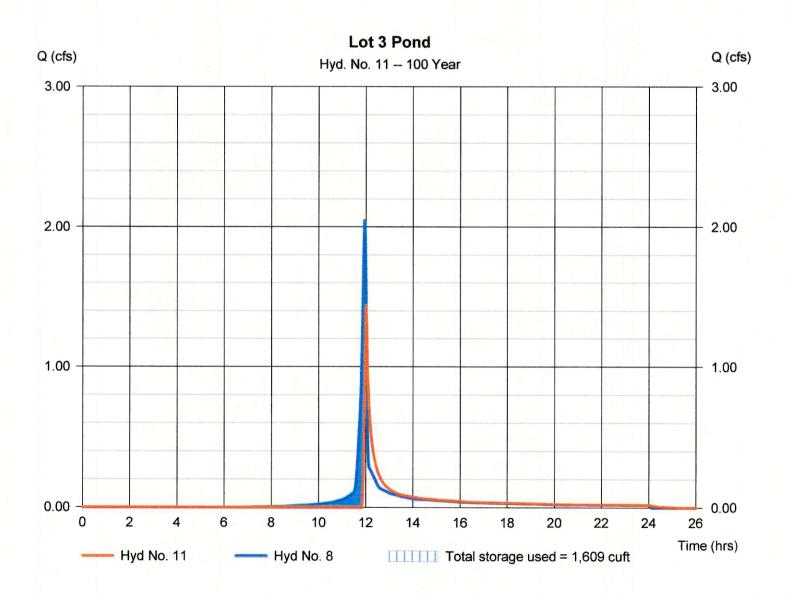

Hyd. volume Max. Elevation = 2,638 cuft $= 1042.88 \, ft$

Reservoir name

= 8 - Into Pond Lot 3 = Lot 3 Pond

Max. Storage

= 1,492 cuft


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

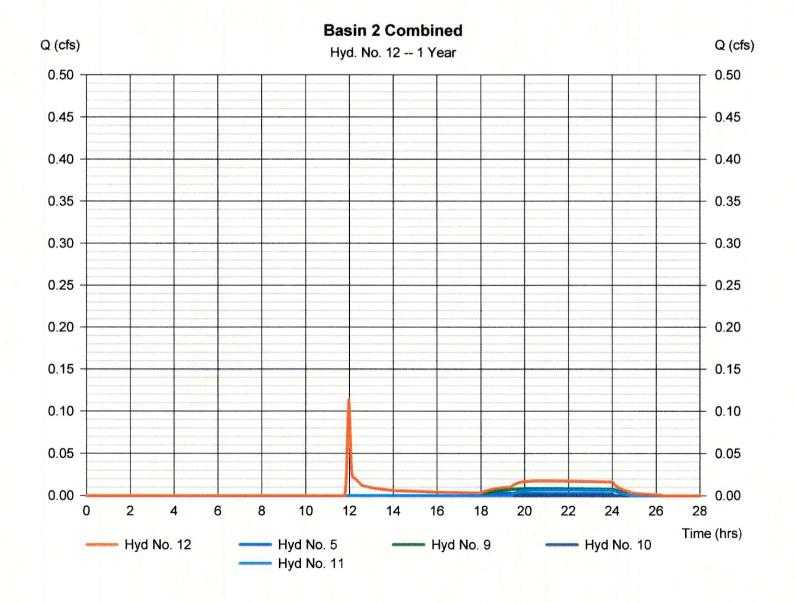
Thursday, 04 / 11 / 2019

Hyd. No. 11

Lot 3 Pond

Hydrograph type = Reservoir Peak discharge = 1.436 cfsStorm frequency = 100 yrsTime to peak $= 12.00 \, hrs$ Time interval = 2 min Hyd. volume = 3,254 cuft Inflow hyd. No. = 8 - Into Pond Lot 3 Max. Elevation $= 1043.07 \, ft$ Reservoir name = Lot 3 Pond Max. Storage = 1,609 cuft

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12


Thursday, 04 / 11 / 2019

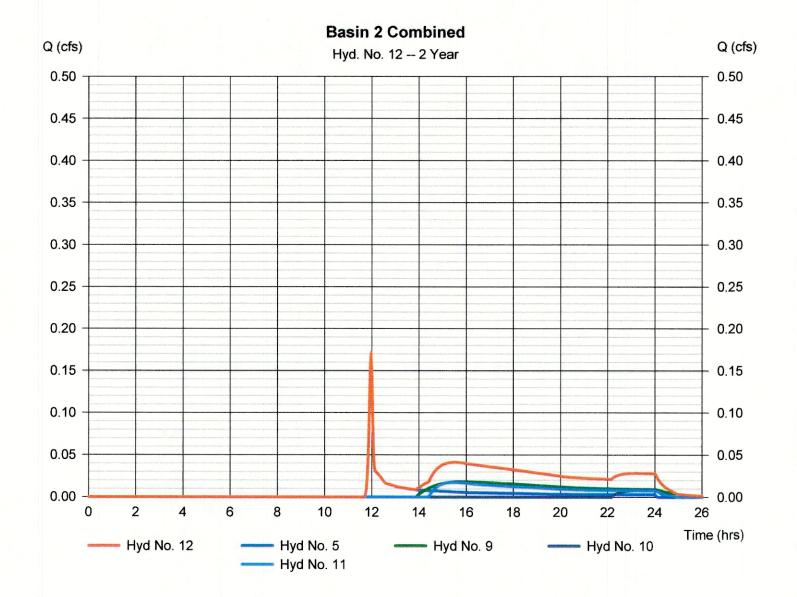
Hyd. No. 12

Basin 2 Combined

Hydrograph type = Combine
Storm frequency = 1 yrs
Time interval = 2 min
Inflow hyds. = 5, 9, 10, 11

Peak discharge = 0.114 cfs
Time to peak = 11.97 hrs
Hyd. volume = 565 cuft
Contrib. drain. area = 0.154 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12


Thursday, 04 / 11 / 2019

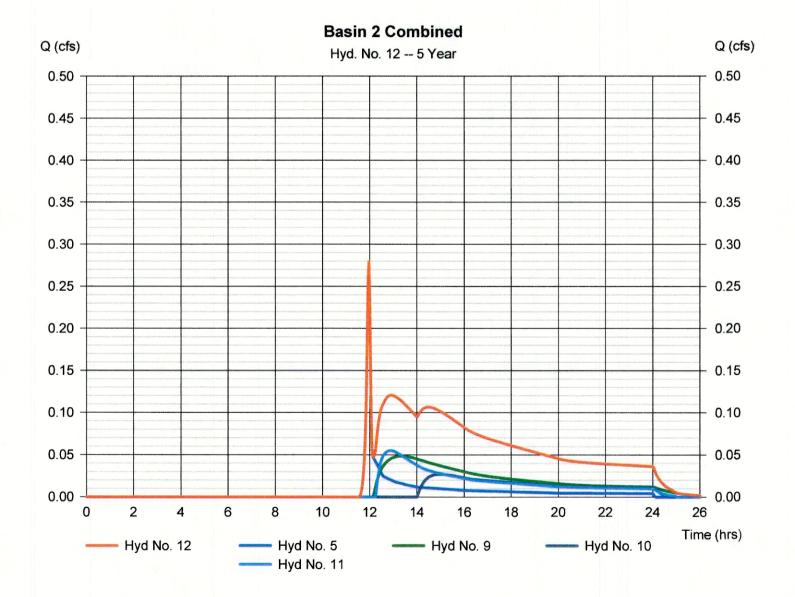
Hyd. No. 12

Basin 2 Combined

Hydrograph type = Combine
Storm frequency = 2 yrs
Time interval = 2 min
Inflow hyds. = 5, 9, 10, 11

Peak discharge = 0.171 cfs
Time to peak = 11.97 hrs
Hyd. volume = 1,328 cuft
Contrib. drain. area = 0.154 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12


Thursday, 04 / 11 / 2019

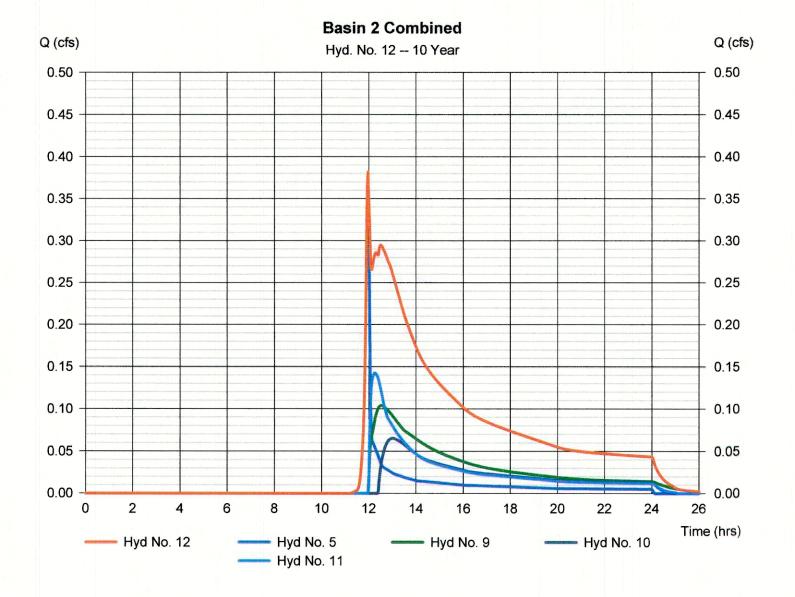
Hyd. No. 12

Basin 2 Combined

Hydrograph type = Combine
Storm frequency = 5 yrs
Time interval = 2 min
Inflow hyds. = 5, 9, 10, 11

Peak discharge = 0.279 cfs
Time to peak = 11.97 hrs
Hyd. volume = 3,151 cuft
Contrib. drain. area = 0.154 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12


Thursday, 04 / 11 / 2019

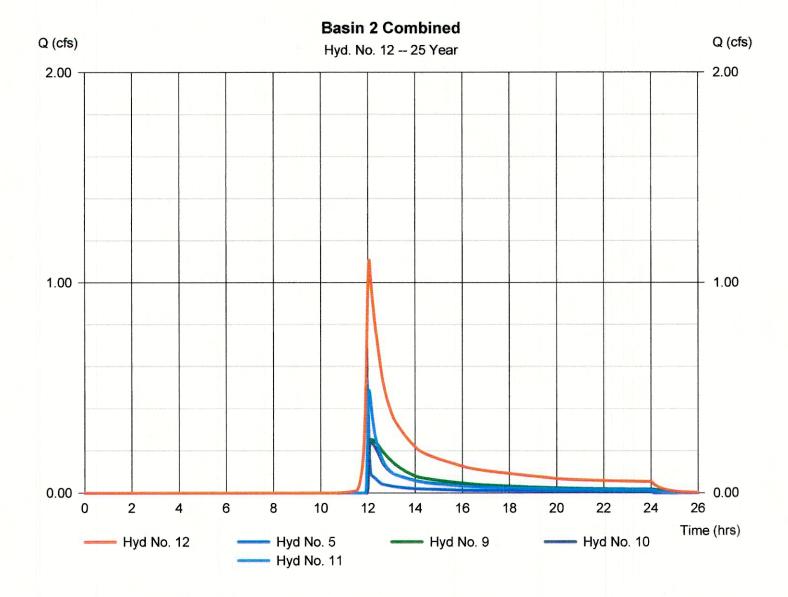
Hyd. No. 12

Basin 2 Combined

Hydrograph type = Combine
Storm frequency = 10 yrs
Time interval = 2 min
Inflow hyds. = 5, 9, 10, 11

Peak discharge = 0.382 cfs
Time to peak = 11.97 hrs
Hyd. volume = 4,835 cuft
Contrib. drain. area = 0.154 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

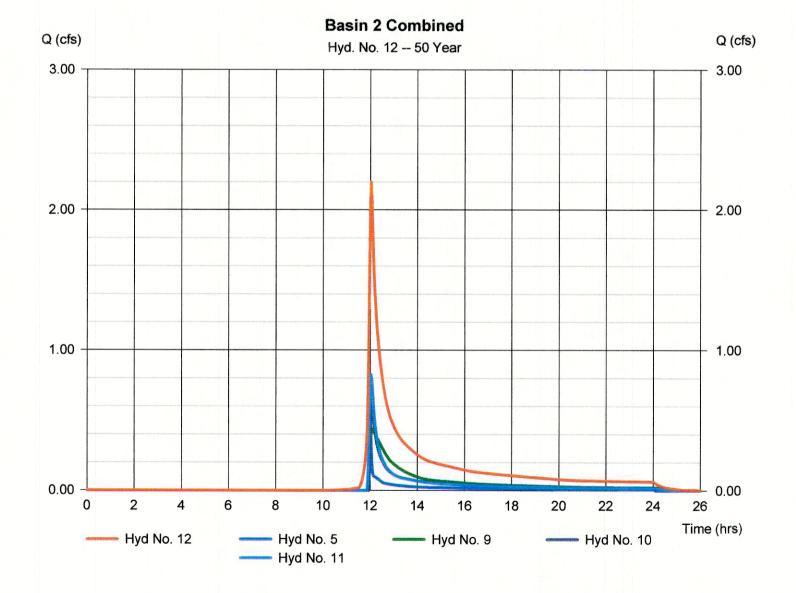

Thursday, 04 / 11 / 2019

Hyd. No. 12

Basin 2 Combined

Hydrograph type = Combine
Storm frequency = 25 yrs
Time interval = 2 min
Inflow hyds. = 5, 9, 10, 11

Peak discharge = 1.108 cfs
Time to peak = 12.07 hrs
Hyd. volume = 7,413 cuft
Contrib. drain. area = 0.154 ac


Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

Thursday, 04 / 11 / 2019

Hyd. No. 12

Basin 2 Combined

Hydrograph type = Combine Storm frequency = 50 yrs Time interval = 2 min Inflow hyds. = 5, 9, 10, 11 Peak discharge = 2.201 cfs
Time to peak = 12.03 hrs
Hyd. volume = 9,550 cuft
Contrib. drain. area = 0.154 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v12

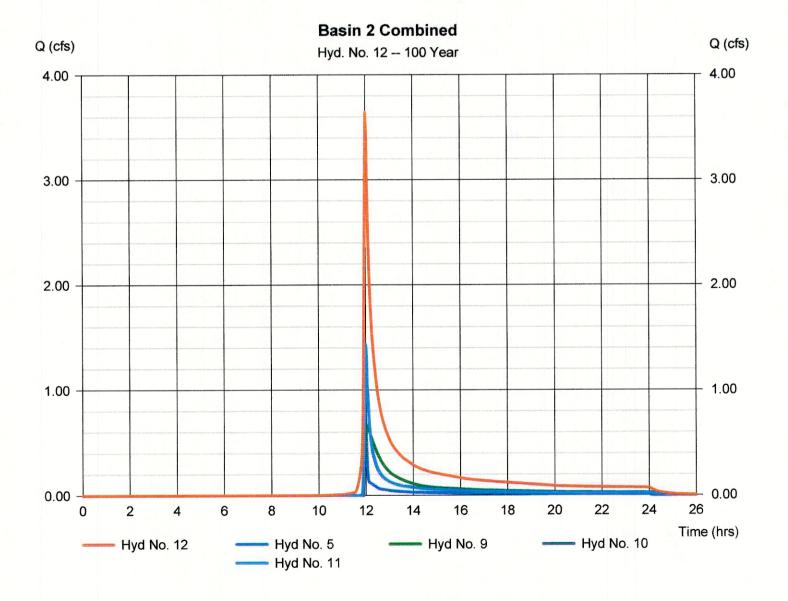
Thursday, 04 / 11 / 2019

Hyd. No. 12

Basin 2 Combined

Hydrograph type Storm frequency Time interval

= Combine


= 100 yrsTime to peak

= 2 min Inflow hyds. = 5, 9, 10, 11 Peak discharge

= 3.646 cfs

= 12.00 hrsHyd. volume = 11,837 cuft

Contrib. drain. area = 0.154 ac

Hydrograph Return Period Recap

		Inflow				Peak Out	flow (cfs)				Hydrograph
No.	type (origin)	hyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		0.001	0.002		0.005	0.007	0.011	0.014	0.017	Pre-development Basin 1
2	SCS Runoff		0.297	0.579		1.171	1.753	2.688	3.493	4.377	Pre-development Basin 2
3	SCS Runoff		0.041	0.079		0.160	0.240	0.368	0.479	0.600	Pre-development Basin 3
4	SCS Runoff		0.001	0.001		0.002	0.002	0.004	0.004	0.005	Post Basin 1
5	SCS Runoff		0.114	0.171		0.279	0.382	0.543	0.678	0.824	Post Bypass
6	SCS Runoff		0.581	0.744		1.032	1.292	1.692	2.020	2.366	Post into Pond Lot 1
7	SCS Runoff		0.551	0.700		0.963	1.201	1.566	1.863	2.175	Into Pond Lot 2
8	SCS Runoff		0.518	0.658		0.906	1.130	1.473	1.752	2.045	Into Pond Lot 3
9	Reservoir	6	0.008	0.018		0.049	0.104	0.253	0.436	0.660	Lot 1 pond
10	Reservoir	7	0.000	0.008		0.027	0.065	0.242	0.642	1.078	Lot 2 Pond
11	Reservoir	8	0.007	0.017		0.055	0.142	0.486	0.825	1.436	Lot 3 Pond
12	Combine	5, 9, 10,	0.114	0.171		0.279	0.382	1.108	2.201	3.646	Basin 2 Combined
13	SCS Runoff	11	0.014	0.021		0.034	0.047	0.067	0.083	0.101	Post Basin 3

Proj. file: 2019016.gpw

Thursday, 04 / 11 / 2019

Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan Date: 4/10/2019 Number of lines: 3 Outfall က ナ 7 Project File: 2019016-pipe 1.stm

Storm Sewers v12.00

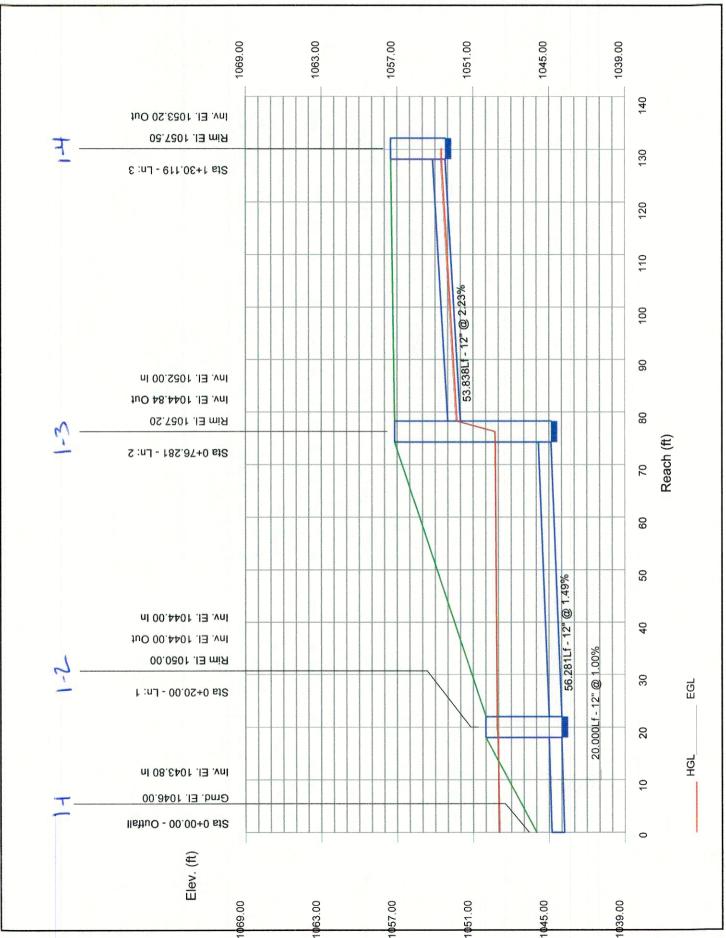
Contract of the last
-
ō
The same
400000
$\boldsymbol{\sigma}$
~~
THE OWNER.
-
and the same
0
- 2/4 Marie
644
"
Tab
-
Wer
4
\mathbf{c}
-
Sew
-
Se
v
4
~ J
ALL DESIGNATION OF THE PERSON
_
5
ō
Storn

Line ID			1-1 to 1-1	1044.00 1044.84 1049.10 1049.24 1050.00 1057.20 1-2 to 1-3	1052.00 1053.20 1052.27 1053.49 1057.20 1057.50 1-3 to 1-4	019
m Elev	dn	(ft)	1043.80 1044.00 1048.92 1049.03 1046.00 1050.00	1057.20	1057.50	Run Date: 4/10/2019
Grnd / Rim Elev	Du	(#)	1046.00	1050.00	1057.20	Run Da
>	dn	(£)	1049.03	1049.24	1053.49	
HGL Elev	Du	(£)	1048.92	1049.10	1052.27	m
A	ďn	(ft)	1044.00	1044.84	1053.20	Number of lines: 3
Invert Elev	Du	(#)	1043.80	1044.00	1052.00	Number
	Slope	(%)	1.00	1.49	2.23	
Pipe	Size	(in)	12	12	12	
Vel		(ft/s)	1.79	1.21	2.64	
Cap		(cfs)	.93	2.36	2.88	
Total			14.1	0.95	0.47	
Rain		(in/hr) (cfs)	10.4	10.8	11.8	
	Syst	(min)	7.2	6.5	5.0	
ဦ	Inlet	(min)	5.0	5.0	5.0	
U	otal		0.14	60.0	0.04	
Area x C	Incr		0.05	0.05	0.04	
Rnoff Area x C		(c)	09:0	0.80	0.40	
	- E	(ac)	0.24	0.16	0.10	1.stm
Drng Area	Incr	(ac)	0.08	90.0	0.10	16-pipe
Len		(ft)	En20.000	1 56.281	2 53,838	Project File: 2019016-pipe 1.stm
			0	10	m	<u>o</u>
Station Len Drng Area		Line	F	1 56	2 5	ject Fi

Storm Sewers v12.00

NOTES:Intensity = 55.99 / (Inlet time + 5.10) ^ 0.67; Return period =Yrs. 100 ; c = cir e = ellip b = box

Inlet Report


Byp	0	±	#		
<u> </u>			# ₀	<u>a</u>	
	Depr (in)	0.0	0.0	0.0	010
Inlet	Spread (ft)	30.00	7.84	2.04	3: 4/10/2019
	Depth (ft)	0.30	0.22	0.10	Run Date:
	Spread (ft)	30.00	7.84	3.97	
	Depth (ft)	0.30	0.22	0.14	
	E	0.000	0.000	0.013	8:3
Gutter	Sx (ft/ft)	0.010	0.020	0.020	Number of lines: 3
9	Sw (ft/ft)	0.010	0.050	0.050	Numbe
	W (ft)	10.00	2.00	2.00	
	So (ft/ft)	Sag	Sag	0.010	
	W (#)	0.00	1.00	1.00	
Grate Inlet	J€	0.00	1.00	1.00	
Gra	Area (sqft)	0.00	1.00	0.00	
nlet	J €	0.00	0.00	0.00	
Curb Inlet	Ħ.E.	0.0	0.0	0.0	
Junc	adkı	Genr	Grate	Grate	
0 6	cfs)	0.00	0.00	0.19	
o	(cfs)	0.57	0.76	0.28	
ø		0.00	0.19	0.00	
" 5	(cfs)	0.57	0.57	0.47	e 1.stm
Line Inlet ID		1-2	1-3	4	Project File: 2019016-pipe 1.stm
Line	02	-	2	က	Proje

NOTES: Inlet N-Values = 0.016; Intensity = 55.99 / (Inlet time + 5.10) ^ 0.67; Return period = 100 Yrs.; * Indicates Known Q added. All curb inlets are Horiz throat.

S
C
0
=
Computations
4
3
Q
2
7
~
U
O
Č
2 4000
Line
Ø
Grade
ā
-
C
4.
.0
vdraulic
(D
7
>

Î	ydra	ulic	Hydraulic Grade Line Computa	de L	ine	ပ္ပ	dw	utai	tions	10													Page 1	
Line	Line Size	σ			۵	Downstream	am				Len				Upstream	ream				Check		JL	Minor	
	(in)	(cfs)	Invert elev (ft)	HGL lelev (ft)	Depth Area (ft) (sqft)	_	Vel (ft/s)	Vel l head (ft)	EGL (ft)	Sf (%)	£	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)		(ft)	
_	12	1.41	1043.80	1048.921.00	00.	62.0	1.79	0.05	1048.97	0.533	20.000	20.000 1044.0049.03	49.03	1.00	0.79	1.79	0.05	1049.08	0.533	0.533	0.107	1.50	0.07	
2	12	0.95	1044.00	1049.101.00	00.	0.79	1.21	0.02	1049.12	0.242	56.281	1044.8049.24	49.24	1.00	0.79	1.21	0.02	1049.26	0.242	0.242	0.136	0.87	0.02	-
က	12	0.47	1052.00	1052.270,27*	27*	0.17	2.71	0.10	1052.38	0.000	53.838	53.838 1053.2053.49		0.28**	0.18	2.57	0.10	1053.59	0.000	0.000	n/a	1.00	0.10	
٣	oject File:	201901	Project File: 2019016-pipe 1.stm	E										2	Number of lines:	of lines:	က		Run	Date:	Run Date: 4/10/2019	o		
ž	otes: * Noi	mal dept	Notes: * Normal depth assumed; ** Critical depth.;	1; ** Critica	al depth	. ; c = cir		e = ellip b = t	pox					-										

Storm Sewers v12.00

Ctorm Cowers

Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan Date: 4/10/2019 Number of lines: 2 Outfall 2 Project File: 2019016-pipe 2.stm

Storm Sewers v12.00

0
ation
a
3
ap
<u>`</u> @
-
-
9
3
O
Sew
E
_
.0
70

			-					-	-		-												
Station	uo	Len	Drng Area		Rnoff	Area x C	v	Tc	4	Rain T	Total	Cap	Vel	Pipe		Invert Elev	۸٤	HGL Elev	>	Grnd / Rim Elev	m Elev	Line ID	
Line	o I		Incr	Total		Incr	Total	Inlet	Syst			<u> </u>		Size	Slope	Dn	dn	Dn	dn	Dn	ηD		
	Ī	(ft)	(ac)	(ac)	(c)			(min)	(min)	(in/hr) (cfs)		(cfs)	(ft/s)	(in)) (%)	(ft)	(ft)	(#)	(#)	(£)	(f)		
_	EntB.539	539	0.05	0.15	08.0	0.04	0.09	5.0	6.0	1.	1.00 8	8.53 2	2.24	12	19.57	1034.50	1044.00	1042.02	1044.42	1044.00	1054.10	1034.50 1044.00 1042.02 1044.42 1044.00 1054.10 2-1 to 2- Z	
7	1 43.641	.641	0.10	0.10	0.50	0.05	0.05	5.0	5.0	11.8	0.59 3.	3.58 3	3.05	12	3.44	1049.10	1050.60	1049.10 1050.60 1049.38 1050.92 1054.10 1054.60 2-2 to 2-	1050.92	1054.10	1054.60	2-2 to 2- \$	
												entre a si il il promono provincio in per tri en											
								Control of the Contro															
Ecological States and the second second								And the second second second second															
er en								10.28 kiji kini maraja ara Guya marani Afrik															
		al																					
P.	ject File	Project File: 2019016-pipe 2.stm	16-pipe	2.stm												Number	Number of lines: 2			Run Dat	Run Date: 4/10/2019	916	

Storm Sewers v12.00

NOTES:Intensity = 55.99 / (Inlet time + 5.10) ^ 0.67; Return period = Yrs. 100 ; c = cir e = ellip b = box

-		-
	C	
		2
	d	
C	Y	1
	_	Π.
	d	
	_	_

Byp Line No		₩0		
Depr	(ii)	0.0		
Inlet	(£)	10.71		
Depth	(t)	0.21		
Spread	£)	10.71		_
Depth	(#)	0.21		
_		0.000		
Sx	ft/ft)	0.020		
וכ	(ft/ft)	0.020		
	(#)	4.00		-
	(ft/ft)	Sag		
	(#)	1.00	3	
<u> </u>	(#)	1.00	3	
Area	(sqft)	1.00		
	£)	00.00		
2	(in)	0.0	3	
Type		Grate		
	(cfs)	00.00		
	(cfs)	0.83		
	(cfs)	0.36		
	(cfs)	0.47		
O C		2-2		
No No		~	u.	

Storm Sewers v12.00

NOTES: Inlet N-Values = 0.016; Intensity = 55.99 / (Inlet time + 5.10) ^ 0.67; Return period = 100 Yrs.; * Indicates Known Q added. All curb inlets are Horiz throat.

Hydraulic Grade Line Computations

Minor	(#)	n/a	0.12	
JL		0.50	1.00	6
	Enrgy loss (ft)	n/a	n/a	4/10/20
Check	Ave Sf (%)	1.129	0.000	Run Date: 4/10/2019
	Sf (%)	1.988	0.000	Run
	EGL elev (ft)	1044.58	1051.04	
	Vel head (ft)	0.16	0.12	
eam	Vel (ft/s)	3.20	2.73	Number of lines: 2
Upstream		0.31	0.22	umber o
	Depth Area (ft) (sqft)	0.42**	0.82**	Z
	HGL elev (ft)	i .		
	Invert elev (ft)	48.539 1044(064.42 j	43.641 1050.6050.92	
Len	£	48.539	43.641	
	Sf (%)	0.270	0.000	
	EGL elev (ft)	1042.05	1049.49 0.000	
	Vel head (ft)	0.03	0.12	
eam	Vel (ft/s)	1.28	3.36	
Downstream	Depth Area (ft) (sqft)	0.31	0.18	
	Depth (ft)	1.00	0.28*	
	HGL elev (ft)	1042.021.00	1049.38	ε
	Invert elev (ft)	1034.50	1049.10 1049.38,28*	Project File: 2019016-pipe 2.stm
ø	(cfs)	1.00	0.59	2019016
Size	(in)	12	12	ect File:
ine		-	7	Proj

Storm Sewers v12.00

Notes: * Normal depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

Storm Sewers

3-4 Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan Date: 4/11/2019 က 2,2 Number of lines: 4 2 Outfall 2.5 Project File: 2019016-pipe 3.stm 21

Storm Sewers v12.00

2
I
ation
2
abulation
`w
-
9
Sewer
0
S
_
E
-
Stor
In

5				2																		Г
Station	Len	Drng Area		Rnoff	Area x C	U	ည	LZ S	Rain T	Total C	Cap	Vel	Pipe	=	Invert Elev	۸.	HGL Elev	>	Grnd / Rim Elev	m Elev	Line ID	
Line	To	Incr	Total		Incr	Total	Inlet S	Syst				1 37	Size	Slope	Du	ďn	Du	dn	Dn	dn		
	(ft)	(ac)	(ac)	(c)			(mim)	(min)	(in/hr) (cfs)		(cfs) ((ft/s) ((ii)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
~	End5,000	0.00	0.25	0.00	00.0	0.13	0.0	15.4	7.3	0.98	0.00	.25	12	0.00	1034.00	1034.00	1043.09	1043.10	1034.00 1034.00 1043.09 1043.10 1044.00 1047.00	1047.00	3-1 to 3-	
2	1 50.676	0.07	0.20	09.0	0.04	60.0	5.0	5.7	11.3	1.06 0.	0.00	80.0	84	0.00	1035.63	1035.63	1043.13	1043.13	1035.63 1035.63 1043.13 1043.13 1047.00 1044.00	1044.00	3-2 to 3-	
ю	2 35.228	0.13	0.13	0.40	0.05	0.05	5.0	5.0	11.8	0.62	3.48	0.78	12	3.25	1038.50	1039.65	1043.13	1043.16	1038.50 1039.65 1043.13 1043.16 1044.00 1044.50	1044.50	3-3 to 3-	
4	1 24.721	0.05	0.05	0.80	0.04	0.04	5.0	5.0	11.8	0.47 10.34	•	1.62	12	28.72	1043.00	1050.10	1043.15	1050.39	1043.00 1050.10 1043.15 1050.39 1047.00 1054.10	1054.10	3-2 to 3-	
Proje	Project File: 2019016-pipe 3.stm	3016-pip	e 3.stm												Number	Number of lines: 4	4		Run Da	Run Date: 4/11/2019	019	T

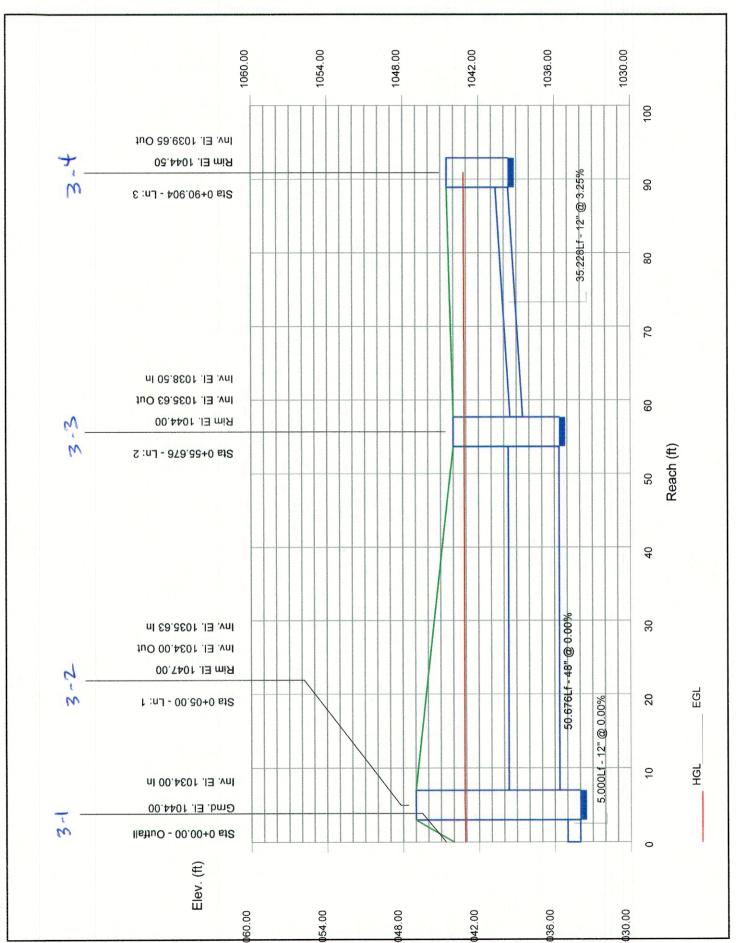
Storm Sewers v12.00

NOTES:Intensity = 55.99 / (Inlet time + 5.10) ^ 0.67; Return period = Yrs. 100 ; c = cir e = ellip b = box

Inlet Report

Fine .	Line Inlet ID	g (ø	ø	0 6	Junc	Curb Inlet	et	Grate	Grate Inlet				์ อ	Gutter					Inlet		Byp	
<u>0</u>		(cfs)	carry (cfs)	capr (cfs)	cfs)	77.	(in)	L (ft)	Area L (sqft) ((ff) (W (#)	So (ft/ft)	» £	Sw (ft/ft)	Sx (ft/ft)	<u> </u>	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	S S	
~	3-2	0.00	0.00	00.00	0.00	МН	0.0	0.00	0.00	0.00	0.00	Sag	0.00	0.000	0.000	0.000	0.00	0.00	0.00	0.00	0.0	#O	
2	3-3	0.50	0.00	0.50	0.00	Genr	0.0	00.00	00.00	00.00	00.0	Sag	10.00	0.050	0.020	0.000	0.30	00.9	0.30	00.9	0.0	Off	
ო	34	0.62	0.00	0.62	0.00	Genr	0.0	0.00	0.00	0.00	00.0	0.040	4.00	0.050	0.020	0.150	0.29	8.73	0.29	8.73	0.0	N	
4	3-5	0.47	00.00	0.47	0.00	Grate	0.0	0.00	1.00	1.00	1.00	Sag	4.00	0.020	0.020	0.000	0.15	7.51	0.15	7.51	0.0)#O	
Proje	Project File: 2019016-pipe 3.stm	ipe 3.stm												Number	Number of lines: 4	4		ш.	Run Date	Run Date: 4/11/2019	19		-

Storm Sewers v12.00


NOTES: Inlet N-Values = 0.016; Intensity = 55.99 / (Inlet time + 5.10) ^ 0.67; Return period = 100 Yrs.; * Indicates Known Q added. All curb inlets are Horiz throat.

Hydraulic Grade Line Computations

	Minor	(£)	0.02	0.00	0.01	0.10	
	JL coeff		1.00	1.14	1.00	1.00	٥
		Enrgy loss (ft)	0.013	0.000	0.036	n/a	144,004
	Check	Ave Sf (%)	0.260	0.000	0.102	0.000	Dete: 4/41/2040
		Sf (%)		0.000	0.102		0
		EGL elev (ft)	1043.13 0.260	1043.13	1043.17	1050.49 0.000	
		Vel E Head (ft) (0.02	0.00	0.01	0.10	
	am	Vel (ff/s)	1.25	80.0	0.78	2.57	Number of lines
	Upstream	Area \	0.79	12.57	0.79	0.18	90 1040
		Depth A	00.	4.00	00.		2
		HGL I	•			39 0.28**	
			1034.0043.10	50.676 1035.6043.13	35.228 1039.6643.16	24.721 1050.1050.39	
-		Invert elev (ft)	5.000 10	.676 10	228 10	721 10	
-	Len	(£)	***				
		Sf (%)	1 0.260	3 0.000	4 0.102	9 0.000	
		EGL elev (ft)	1043.11	1043.13	1043.14	1043.25	
		Vel head (ft)	0.02	0.00	0.01	0.10	
	Downstream	Vel (ft/s)	1.25	0.08	0.78	89.9	
			0.79	12.56	0.79	0.07	
		Depth Area (ft) (sqft)	00:	00	00.	15*	
		HGL elev (ft)	043.091	043.134	043.131	043.150	
5		Invert Helev e	1034.00 1043.091.00	1035.63 1043.134.00	1038.50 1043.131.00	1043.00 1043.150.15*	October 1907 2010 2010 2010
		ln els (cfs) (ft	0.98	1.06	0.62	0.47	10046
3	g						6
5	Line Size	(in)	12	48	12	12	
	1		-	7	က	4	L

Storm Sewers v12.0

Notes: * Normal depth assumed; ** Critical depth.; c = cir e = ellip b = box

Storm Sewers

NOAA Atlas 14, Volume 9, Version 2 Location name: Mableton, Georgia, USA* Latitude: 33.8249°, Longitude: -84.5259°

Elevation: 1023.34 ft**

* source: ESRI Maps

** source: USGS

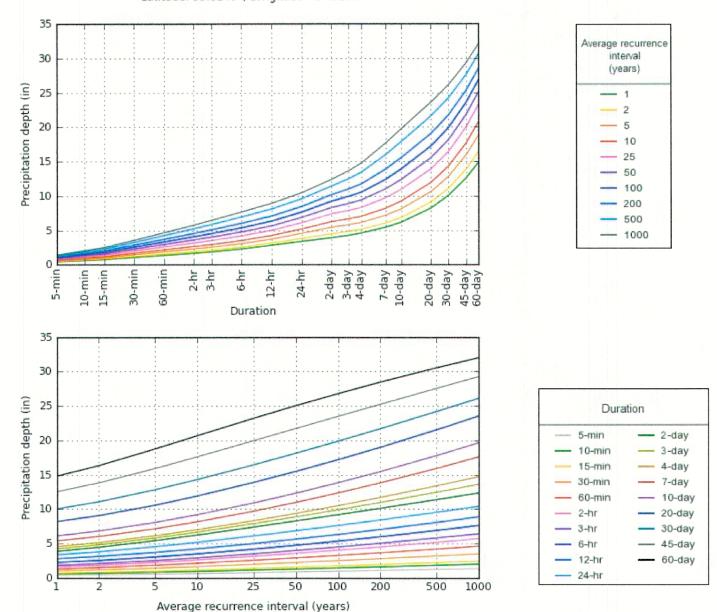
POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_& aerials

PF tabular

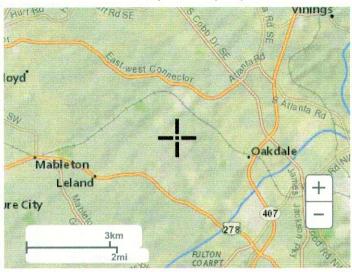

Duration				Average i	recurrence	interval (y	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.401 (0.317-0.503)	0.461 (0.364-0.578)	0.563 (0.443-0.707)	0.651 (0.510-0.820)	0.779 (0.593-1.01)	0.881 (0.656-1.15)	0.989 (0.712-1.31)	1.10 (0.762-1.49)	1.26 (0.838-1.73)	1.38 (0.895-1.92
10-min	0.588 (0.465-0.737)	0.675 (0.533-0.847)	0.824 (0.649-1.03)	0.953 (0.747-1.20)	1.14 (0.869-1.48)	1.29 (0.961-1.69)	1.45 (1.04-1.92)	1.61 (1.12-2.18)	1.84 (1.23-2.54)	2.02 (1.31-2.81
15-min	0.717 (0.567-0.898)	0.823 (0.650-1.03)	1.00 (0.791-1.26)	1.16 (0.911-1.47)	1.39 (1.06-1.80)	1.57 (1.17-2.06)	1.77 (1.27-2.34)	1.97 (1.36-2.66)	2.24 (1.50-3.09)	2.46 (1.60-3.42
30-min	1.03 (0.813-1.29)	1.18 (0.933-1.48)	1.44 (1.13-1.81)	1.67 (1.31-2.10)	1.99 (1.52-2.58)	2.25 (1.68-2.94)	2.53 (1.82-3.36)	2.81 (1.95-3.81)	3.21 (2.14-4.42)	3.52 (2.29-4.89
60-min	1.33 (1.05-1.67)	1.52 (1.20-1.91)	1.86 (1.46-2.33)	2.15 (1.68-2.71)	2.58 (1.96-3.34)	2.92 (2.18-3.82)	3.29 (2.37-4.37)	3.67 (2.54-4.97)	4.21 (2.81-5.80)	4.63 (3.01-6.43
2-hr	1.63 (1.31-2.02)	1.87 (1.49-2.32)	2.27 (1.81-2.82)	2.63 (2.09-3.28)	3.16 (2.44-4.06)	3.59 (2.71-4.64)	4.04 (2.96-5.32)	4.53 (3.18-6.07)	5.20 (3.52-7.10)	5.74 (3.78-7.88
3-hr	1.83 (1.48-2.25)	2.09 (1.68-2.57)	2.53 (2.03-3.12)	2.92 (2.34-3.62)	3.51 (2.74-4.48)	3.99 (3.04-5.13)	4.50 (3.32-5.89)	5.05 (3.58-6.73)	5.82 (3.98-7.90)	6.44 (4.28-8.78
6-hr	2.25 (1.84-2.74)	2.54 (2.07-3.09)	3.04 (2.48-3.71)	3.50 (2.83-4.28)	4.18 (3.30-5.27)	4.74 (3.66-6.03)	5.34 (4.00-6.91)	5.99 (4.31-7.89)	6.91 (4.79-9.27)	7.64 (5.16-10.3
12-hr	2.80 (2.31-3.36)	3.12 (2.58-3.76)	3.70 (3.05-4.46)	4.22 (3.46-5.10)	4.99 (4.00-6.22)	5.63 (4.41-7.07)	6.31 (4.79-8.06)	7.04 (5.14-9.16)	8.07 (5.69-10.7)	8.90 (6.10-11.9)
24-hr	3.35 (2.81-3.98)	3.79 (3.17-4.50)	4.53 (3.78-5.39)	5.17 (4.29-6.17)	6.10 (4.93-7.47)	6.84 (5.42-8.46)	7.61 (5.85-9.57)	8.43 (6.23-10.8)	9.54 (6.81-12.5)	10.4 (7.25-13.7)
2-day	3.87 (3.28-4.53)	4.45 (3.77-5.22)	5.42 (4.58-6.37)	6.24 (5.25-7.35)	7.38 (6.03-8.90)	8.28 (6.63-10.1)	9.19 (7.14-11.4)	10.1 (7.59-12.8)	11.4 (8.24-14.7)	12.4 (8.74-16.1
3-day	4.24 (3.63-4.93)	4.82 (4.12-5.62)	5.81 (4.95-6.78)	6.67 (5.65-7.80)	7.90 (6.53-9.49)	8.89 (7.19-10.8)	9.91 (7.78-12.2)	11.0 (8.32-13.8)	12.5 (9.12-16.0)	13.6 (9.73-17.6
4-day	4.57 (3.93-5.29)	5.14 (4.42-5.95)	6.14 (5.26-7.12)	7.02 (5.98-8.17)	8.32 (6.93-9.98)	9.39 (7.66-11.3)	10.5 (8.32-12.9)	11.7 (8.95-14.7)	13.4 (9.89-17.1)	14.7 (10.6-18.9)
7-day	5.40 (4.70-6.19)	6.04 (5.24-6.92)	7.16 (6.20-8.23)	8.18 (7.05-9.43)	9.72 (8.21-11.6)	11.0 (9.09-13.2)	12.4 (9.92-15.1)	13.8 (10.7-17.2)	15.9 (11.9-20.2)	17.6 (12.8-22.4)
10-day	6.13 (5.36-6.98)	6.83 (5.97-7.78)	8.08 (7.05-9.22)	9.21 (7.99-10.5)	10.9 (9.29-12.9)	12.3 (10.3-14.7)	13.9 (11.2-16.8)	15.5 (12.1-19.1)	17.8 (13.4-22.4)	19.7 (14.5-24.9)
20-day	8.19 (7.27-9.21)	9.07 (8.03-10.2)	10.6 (9.35-11.9)	11.9 (10.5-13.5)	13.9 (12.0-16.1)	15.5 (13.1-18.2)	17.2 (14.1-20.5)	19.0 (15.0-23.1)	21.5 (16.5-26.7)	23.5 (17.6-29.4
30-day	10.0 (8.98-11.2)	11.1 (9.89-12.4)	12.8 (11.4-14.3)	14.3 (12.7-16.0)	16.4 (14.2-18.9)	18.1 (15.4-21.0)	19.9 (16.4-23.5)	21.7 (17.3-26.1)	24.2 (18.7-29.7)	26.1 (19.7-32.4)
45-day	12.5 (11.3-13.9)	13.8 (12.5-15.3)	15.9 (14.3-17.7)	17.6 (15.8-19.6)	20.0 (17.3-22.6)	21.7 (18.6-24.9)	23.5 (19.5-27.4)	25.2 (20.3-30.0)	27.5 (21.4-33.4)	29.3 (22.3-36.0
60-day	14.8 (13.4-16.3)	16.3 (14.8-18.0)	18.8 (17.0-20.7)	20.7 (18.6-22.9)	23.2 (20.2-26.0)	25.0 (21.5-28.4)	26.8 (22.3-30.9)	28.5 (23.0-33.5)	30.5 (23.9-36.7)	32.0 (24.6-39.1

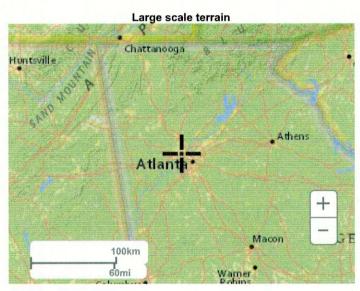
Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PDS-based depth-duration-frequency (DDF) curves Latitude: 33.8249°, Longitude: -84.5259°


NOAA Atlas 14, Volume 9, Version 2


Created (GMT): Wed Apr 10 13:10:38 2019

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer